Elektrik ve Isı Yüküniü İzleyen Birleşik Isı ve Güiç Sistemleri İçin Bir Karşılaştırma*
 A Comparison of Electrical - and Thermal - Load Following CHP Systems**

Prof. Dr. Ali Jalalzadeh; Mak. Müh

Abstract

ÖZET Birleşik ısı ve güç (BIG) (Combined Heat and Power: CHP) kavraminin tüm avantajlarının binalarda gerçekleşebilmesi, BIG sisteminin tümlestirilmesine, boyutlandirllmasina ve elektrik şebekesine paralel veya bağımsız olarak çalıştırılmasına bağlıdır. $B u$ assamalar, BIG tasarım/işletim olanaklarının değerlendirilmesini ve söz konusu bir uygulama için en iyi seçeneğin tesbitini gerekli kılar. Elektrik ve ısı yüklerinden hangisinin denetim için kullanılacă̆ı da bu seçenekler içerisinde açıkça yer almaktadırlar.

Bu makale, daha önce sanal bir binadaki şebekeden bağımsız olarak bina elektrik gücü yüklerini izleyen BIG sistemi hakkında yapılmış bir çallşmanın uzantısı olup, amaç aynı binanin ısı yüklerini izleyen bir BIG sisteminin termodinamik davranışını değerlendirmek ve bunu önceki çallşmanın sonuçlarıyla karşlaştırmaktır.

Bu çalışmada ele alınan konular; (1) toplam birincil enerji tüketimi üzerinde alt-sistem verimlerinin etkisini belirleyen bir parametrik analiz, (2) birinci yasa verimlerinin BIG sistemi ve toplam sistem düzeyinde değerlendirmek (3) şebekeye bir ay içersinde net geri verilen/şebekeden alınan elektrik enerjisini değerlendirmek, (4) elektrik şebeke veriminin toplam sistem enerji tüketimini nasll etkilediğini incelemek.

Isı yükünü izleyen BIG modeli için yapılan parametrik analiz, toplam enerji tüketiminin, yerinde güç üretimi ve bina elektrik sistemleri verimlerindeki iyileştirmelere olan önemli ölçüdeki olumlu duyarlılığını göstermiştir. Benzer türdeki sonuçlar, elektrik yükünü izleyen BIG modeli için yapılan önceki çalışmada da ortaya çıkmıştır. Aylık net şebekeye verilen elektrik enerjisi, bina isı yüklerinin en yüksek düzeyde olduğu pik soğutma aylarında gerçekleşmiştir. Yerinde güç üretimi ve elektrikli cihaz verimlerindeki bir artışin aylık net şebekeden elektrik enerjisi alımını azaltmasına karşın; böyle bir önlem bir absorpsiyonlu soğutma sistemi için ters etki yapmıştır. Bununla birlikte, şebekeden alınan/geri verilen elektrik enerjisi
arasındaki optimum denge, bu makalenin kapsaminda olmayan bir ekonomik analiz ile çözümlenebilir.

Termodinamiğin birinci yasasına göre, $ו s l$ yükünü izleyen BIG modeli, daha önce incelenen modele klyasla çok üstün bulunmuştur. Bu modelin aylık ortalama BIG verimi daha yüksek ve önceki çalışmayla karşllaştırıldığında, mevsimsel değişmelere daha az duyarlı olmuştur. Buna ek olarak, lsı yükünü izleyen model daha yüksek bir toplam sistem verimi (yakıtın değerlendirilmesi) sunmaktadır.

ABSTRACT

Realization of the full benefits of impmenting the combined heat and power (CHP) concept in buildings hinges upon optimum CHP system integration, sizing and operation in paralel with, or independent of the electric utility grid. This realization necesstates assesment of the appropriate CHP design/operation possibilities and selection of the best candidate for a given application. Electrical-and thermal-load following CHP models are certainly among such candidates. This paper is essentially an extension of a previous study on a grid-independent, electrical-load-following CHP system for a hypothetical office building. The objectives of this study are to evaluate the thermodynamic performance of a thermal-load-following CHP system fort the same building and to compare the results with those of the previous study. Included in the scope of the current work are (1) parametric analysis addressing the infiuence of the subsystem efficiencies on the total primary energy consumption (2) an evaluation of first law efficiencies at two levels:CHP system and overall system, (3) an estimation of net monthly electricity importlexport and (4) an asessment of how electric utility efficiency offects the overall system energy consumption.
The parametric analysis demonstrated the positive and significant responsiveness of the total primary energy consumption to improvements in the efficiencies of the on site power generation and building electrical systems for the thermal-load-following model. A similar finding was also echoed by the
previous work on te electrical load following CHP. The net monthly export of electricity (fort the thermal-following model) occurred during teh peak cooling months, when the building thermal loads are the highest. While an increase in the efficiencies of the on site power generation and electrical equipment reduced the net monthly import of electricity, the effects of such a measure with the abroption cooling system were the opposite. However, the issue of an optimum balance between export and import of electricity can only be addressed through an economic assesment, which is not with in the scope of this work. The scenarios adopting more efficient absortion cooling showed a stronger sensitivity to the electrical utility efficiency: The thermal-load-following CHP model was found to be superior to the other previousiy studied model from the firstlaw thermodynamic standpoint. The monthly average CHP efficiency of this model was higher and comparatively much less sensitive to seasonal variations. The thermal-loadfollowing model offered a higher overall system efficiency (fuel utilization) as well.

1. Giriş

Bu çalışma, Atlanta (ABD), Georgia'daki kuramsal bir binada sanal olarak kurulu ve 1s1 yükünü izleyen bir birleşik 1sı ve güç sisteminin termodinamik analizini tanıtmaktadır. Bu çalışma, şebekeden bağımsız, elektrik yükü izleyen BIG sistemi üzerine daha önce yapılmıș olan bir çalışmanın uzantısidır (Jalalzadeh-Azar, 2003). Her iki çalışmada da ortak konular; kuramsal bina, HVAC sistemi ve BIG alt-sistem teknolojileridir. Buna karşın, bu çalışmadaki BIG sistemi şebekeden bağımsız olarak çalışmamaktadır (Şekil 1). Isı yükünü izleyen BIG sisteminin boyutlandırılmasında isı talebi ölçüt olduğundan, geri-kazanılabilir atık ısının tümü kullanılmaktadır. Bu modelde, gerçek talep ile yerinde-üretilen elektrik arasında uyuşmazlık olduğunda, şebeke ile bir elektrik alişverişi gerçekleşmektedir. Bu çalışmadaki temel varsayımlar şunlardır: (1) üretilen elektik gücü fazlası her zaman şebekeye geri verilmektedir, (2) bu geri verim, merkezi santrallerdeki güç üretimini oransal olarak ikame eder . Müşterilerden elektrik

[^0]

Şekil 1. BIG sistemi baz şeması.
enerjisinin şebekeye geri verilmesi şu anda henüz yaygınlaşmamış olsada, net-ölçme programları gibi teşvikler ve programlar (U.S. DOE 2003a; Wan 1966) bu uygulamaya ilgiyi arttırmaktadır. Bu çalışma, herhangi bir ekonomik değerlendirme yapmaksızın söz konusu BIG sistemlerinin sadece enerjiye ilişkin konularına değinmektedir.

Bu çalışma, önceki çalışmaya benzer bir parametrik analiz kapsamaktadır. Bu analizin amacı, alt-sistemlerin performans parametrelerinide yapılan iyileştirmelerin, 1s1 yükünü izleyen BIG sistemlerinin toplam verimi üzerindeki etkilerini belirlemek ve bunları elektrik yükünü izleyen sistemlerle karşllaştırmaktır. Burada alt-sistemler olarak, yerinde elektrik üretimi (gaz türbinleri), soğurmalı (absorpsiyonlu) soğutma ve diğer bina elektrikli cihazlar göz önünde tutulmuştur. Yapılan parametrik analiz sonuçları içersinde; binanın toplam enerji tüketimi, yerinde elektrik üretimi için gerekli birincil enerji ve atık ısının kullanımı bulunmaktadır. Sayısal enerji sonuçları Şekil 1'de gösterilen baz şemaya ilişkin değerlerle normalize edilmektedir.

Bu çalışmanın farklı noktalarından birisi, BIG sisteminin, ayrıca elektrik şebekesini, BIG sistemini ve yardımeı isı arzı sistemlerini içeren toplam sistemin Birinci Yasa verimlerinin tanımları ve hesaplanmasıdır. Bu çalışmada kullanılan toplam sistem verimi, daha sonra tartışılacağı gibi her iki modele belirli basitleştirici varsayımlarla uygulanabilir niteliktedir. Yakıt tüketiminin doğrudan bir yansıması durumunda olan toplam sistem verimi, öncelikle bütün BIG sistemlerine ve her türden enerji tüketim hesaplarına uygulanabilirliği yönünden önemlidir. BIG modelinin ne olduğuna (elektrik yada 1 s y yükünü izleyen) ve bina yüklerine göre büyüklüğüne bakılmaksızın, bu toplam verim mühendislere ve nihai kullanıcılara yararlı bilgiler sağlayabilir. Toplam sistem verimi yerine sadece BIG sistemi verimine odaklanıldığında, BIG sisteminin binanın enerji performansı üzerindeki bağıl etkisinin değerlendirmesi mümkün olmamaktadır. Aslında, benzer türden makro düzeyde önlem ve ölçümler BIG yi esas alan enerji politikalarına ve teşviklerine gündem kazandırmak için zorunludur. Bir binada BIG/şebeke sistem verimlerinin belirlenmesinde aşılması gereken temel güçlük herhangi bir zaman dilimi içersinde sağlıklı elektrik şirketi verim verilerinin olmayışıdır. Ayrıca, daha gelişmiş güç çevrimlerinin kurulumu yapıldıkça, merkezi güç santral verimleri artmaya devam etmektedir. Bu durumda göz önünde tutularak, merkezi elektrik santrallerindeki verim artışları da bu bu makalede göz önünde tutulmaktadır.

2. Baz Binanın Tanıtımı

Söz konusu baz bina Atlanta (ABD) Georgia'da bulunan ve daha önceki çalışmaya (JalalzadehAzar 2003) özdeş kuramsal bir binadır. Bu varsayım; iki ayrı elektrik yükü izleme ve isı yükü izleme BIG sistemi arasında bir karşılaştırma yapabilmek için gereklidir. Baz bina $1800 \mathrm{~m}^{2}\left(19500 \mathrm{ft}^{2}\right)$ döşeme alanına, ortalama olarak $3.9 \mathrm{~m}(13 \mathrm{ft})$ ortalama ana tavan yüksekliğine sahiptir. Toplam pencere ve cam alanları, duvarlar toplamının yaklaşık \% 25'ini oluşturmaktadır. Bina zarfının ortalama isı transfer katsayısı $0.60 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}(0.11 \mathrm{Btu} / \mathrm{h}-$ $\mathrm{ft}^{2}{ }^{\circ}{ }^{\circ} \mathrm{F}$)'dir. HVAC sistemi 1 sitma ve soğutma kapasiteleri sırasıyla yaklaşık olarak 245 kW ($837000 \mathrm{Btu} / \mathrm{h}$) ve 170 kW ($582000 \mathrm{Btu} / \mathrm{h}$) düzeyindedir.

Bina, boyunca haftada yedi gün, saat 08.00-19.00 arasında faaliyet göstermektedir. Bu süre içersindeki termostat ayarı konfor iç hava sıcaklığı olarak soğutma konumunda $24^{\circ} \mathrm{C}\left(76^{\circ} \mathrm{F}\right)$ ve ısıtma konumunda $22^{\circ} \mathrm{C}\left(72^{\circ} \mathrm{F}\right)^{\prime}$ dır. Bu süre dışındaki sıcaklık yükseltimi (soğutmada) $27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$ ve azaltımı (ısıtmada) $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)^{\prime}$ dır. HVAC sistemi gündüz çalışma konumuna sabah 06.00 'da başlamaktadır.

Sekil 2. Bina Isıtma Yükü

Şekil 2'de verilen ve baz binanın günlük yük değişimlerini gösteren grafik verilerine göre; (1) ağırlıklı yük binanın soğutma yüküdür, (2) soğutma yükü dış mahal isı kazançlarından önemli ölçüde etkilenmektedir, (3) binanın sıcak kullanım suyu yükü, özellikle yaz aylarında, toplam yükün küçük bir yüzdesini oluşturmaktadır.

Önceki çalışmada olduğu gibi, hava hazırlama birimleri, soğutmada $18^{\circ} \mathrm{C}\left(65^{\circ} \mathrm{F}\right)$ lık bir ayar noktası sıcaklığı kullanan ve dış mahal hava emişinde sıcaklık kontrollü ekonomizerlerle donanımlı olarak varsayılmıştır. BIG sisteminin kurulu olduğu vaziyette, binanın pik elektrik talebi yaklaşık $45 \mathrm{~W} / \mathrm{m}^{2}\left(4.15 \mathrm{~W} / \mathrm{ft}^{2}\right)$ olup bunun $20 \mathrm{~W} / \mathrm{m}^{2}\left(1.78 \mathrm{~W} / \mathrm{ft}^{2}\right)$ lik bölümü aydınlatma amaçlıdır. Nispeten düşük olan bu enerji talebi, isıtma sistemlerine ek olarak isıyla tahrik edilen soğurmalı soğutma sisteminin kullanılmasıdır. Binanın özgül elektriksel ve ısı yükleri (birim döşeme alanı başına yükler) parametrik analiz süresinde değişmemiştir.

Baz BIG sisteminin Şekil 1'de gösterilen uyarlaması, daha önce analiz edilen şebekeye bağımlı, elektrik yükünü izleyen modele benzer yapıdadır.

3. BIG Sisteminin Tanıtımı

Şekil 1'de gösterilen baz BIG sisteminin kurgusu, önceki çalışmada incelenen şebekeden bağımsız olarak elektrik yükünü takip eden modele benzemektedir. Sistem, güç üretimi için gaz yakıtlı mikro-türbinler, bir soğurmalı (absorption) chiller ve bir servis sıcak suyu hazırlama birimi içermektedir. O makalede açıklandığı gibi, yüksek kısmi yükleri daha yüksek verimlerde takip edebilmek üzere, kademeli çalışmayı kolaylaştıracak üç adet eşdeğer kapasiteli gaz türbini öngörülmüştür (Baz bina için yerinde güç üretim kapasitesi yaklaşık 81 kW civarındadır). BIG alt sistemlerinin verimleri ve çalışmadaki ayar sıcaklıkları önceki sistemle aynıdır (Tablo 1). Bunun tersine, bu makaleye konu olan sistem bir çok farklı konuyu da içermektedir:

- Sistem, şebekeden elektrik enerjisi alımı ve geri verimi konumlarında merkezi elektrik şebekesi ile sürekli iletişim halindedir;
- Bu sistemin güç üretim birimi, eksoz edilen ısının mahal soğutma ve ısıtma yüklerinin tamamını karşılayacak biçimde boyutlandırılmıştır.

Baz sistemdeki ardışık düzenleme içersinde soğutma ve ısıtma sistemlerinde kullanılan eksoz ısısının sıcak servis suyunun hazırlanmasında da kullanımı olanaklı ise de, bu talebi karşılayacak bir doğrudan eksoz ısısı ile ilişkili bir geri kazanım elemanı bulunmamaktadır (Şekil 1). Isıl enerjideki herhangi bir eksikliği karşılamak üzere gaz-yakıtlı bir brülör bulunmaktadır. Bu yöntemin kullanılmasının nedeni, sıcak servis suyu talebinin diğer 1s1 yüklerine oranla çok az oluşudur (Yıllık toplam 1sı talebinin sadece \% 5'i olduğu hesaplanmıştır). Bunun yerine sıcak servis suyu isı talebinin en az \% 60'ı baz BIG sisteminin dolaylı atık ısı geri kazanımı ile gerçekleştirilmektedir. Bunun aksine, sıcak servis suyunun eksoz atık ısısından doğrudan karşılanması durumunda BIG sisteminin kısa fasılalarla, düşük kısmi yüklerde ve az bir verimle çalıştırılması gerekecekti.

4. Analiz Yöntemi

BIG sisteminin performans değerlendirmesi için, önce binanın isıtma, soğutma ve elektrik yükleri ENERGY-10 (NREL LBNL 2002) benzetim yazılımı yardımı ile hesaplanmıştır. Bundan sonra, saatlik benzetim sonuçları, BIG sistemini değişik senaryolar altında analiz etmek üzere diğer bir programa girdi olarak kullanılmıştır. Analiz sırasında kullanılan temel denklemler tablo 1'de verilmiştir.

5. Enerji Tüketimi

Belirli bir t_{1} ve t_{2} zaman aralığı içersinde sistemin zamana göre tükettiği birincil enerji kaynağının toplamı; yerinde güç üretim birimine (p. genyak), yardımcı brülöre (sadece servis suyunu isıtmak için yardyak) temin edilen yakıtların sağladığ1 ve merkezi şebekeden alınan elektrik enerjisine karşılık gelen merkezi santraldeki birincil enerji tüketimleri (merk.santryak) toplamına eşittir.

Burada, t_{l} den t_{2} 'ye olan zaman aralığı, bu makalede yer alan sonuçlar açısından yılın herhangi bir ayını yada tüm bir yılı temsil eder. $\dot{E}_{p . g e n}$ yerinde üretilen elektrik enerjisini, $\dot{E}_{\text {şebeke }}$ şebekeden alınan net eletrik enerji girdisini temsil etmekte olup bunlar saatlik ortalama değerlerdir. Net enerji girdisi $\dot{E}_{\text {sebeke }}$ aşağıdaki şekilde hesaplanır;
$\dot{E}_{\text {sebeke }}=\dot{E}_{\text {toplam }}+\dot{E}_{p . \text { gen }}$
Net olarak elektrik enerjisi şebekeye geri verildiğinde $\dot{E}_{\text {sebeke }}$ 'nin, eksi işaretini aldığına dikkat edilmelidir. Eşitlik 1'deki $\eta_{\text {p.gen.toplam }}$ giriş havası koşullarının ve önceki çalışmada gösterildiği gibi (Jalalzadeh-Azar 2003) gerçek güç çıktısı ile güç kapasitesine oranının bir fonksiyonu olan yerinde güç üretim verimidir. $\dot{E}_{\text {sebeke }}$ ifadesi santraldeki enerji dönüşüm verimini iletim, dağıtım gibi bütün kayıpları içeren elektrik gücü üretim, enerji iletimi ve dağıtımı verimidir. Bu verim \% 30 olarak alınmıştır.

Güç Üretimi

Yerinde güç üretim sisteminin bina ısı yükünü karşılamak üzere çalıştırılıp denetlenmesi koşuluyla, güç üretimi binanın ısı yükü ile aşağıdaki şekilde ilişkilendirilir;

Senaryolar	Giiç Ôrretimi		$\begin{array}{l}\text { Sogurmali Sogutma(Absorption } \\ \text { Cooling) }\end{array}$ Ser		Elektrikli Cihazlar Verim
	Verim	Egzost Sicalhig	Verim	Calısma Sicalig̣ı	
Baz BIG	η^{*}	$260^{\circ} \mathrm{C}$ ($5000^{\circ} \mathrm{F}$)	COP*	94 (200)	β^{*}
PG1	$1.2 \eta^{*}$	260 (500)	COP*	94 (200)	β^{*}
PG2	$1.4 \eta^{*}$	260 (500)	COP*	94 (200)	β^{*}
PG3	$1.2 \eta^{*}$	538 (1000)	COP*	94 (200)	β^{*}
AC1	η^{*}	260 (500)	$1.2 \mathrm{COP*}$	94 (200)	β^{*}
AC2	η^{*}	538 (1000)	$1.4 \mathrm{COP}^{*}$	182 (360)	β^{*}
AC3	η^{*}	260 (500)	$1.8 \mathrm{COP*}$	182 (360)	β^{*}
BEI	η^{*}	260 (500)	COP*	92 (200)	$1.2 \beta^{*}$

NOTLAR:
(1) Gâç Öretiminin η^{*} verimi, hava giriş sscakllğ̣nm fonksiyonudur
(2) $C O P^{*}$; baz absorpsiyonlu soğutma sisteminin COP'si olup çevrel sicaklığmirn fonksiyonudur $35^{\circ} \mathrm{C}$ ($95^{\circ} \mathrm{F}$) çevre sicaklğ̣nda

COP $^{*}=0.67$
(3) β^{*} baz sistemde binanm elektrikli cihazlarnmm verimi. Analiz sırasmda, yararlu üretim miktarmı sabit tutmak âzere bu verim
elektrik yukü degistirilerek ayarlanır.
Tablo 1. Parametrik Analiz senoryaları
$\dot{E}_{p . \text { gen }}=\frac{\eta_{p . \text { gen }} \cdot Q_{\text {eksoz.gerekli }}}{1-\eta_{p . g e n}}$
Bu çalişmadaki bina tek zonlu olarak düşünüldüğünden, istma ve soğutma sistemleri aynı anda çalı̧̧mamaktadır. Böylece, ısı yükünü izleyen BIG için gerekli eksoz 1sısı, Soğutma için;

Isıtma için;
$\dot{Q}_{\text {eksoz.gerekli }} \cong\left(\frac{\dot{Q}_{\text {sstmayyikii }}}{\eta_{\text {sst }} \xi}\right)\left(\frac{T_{\text {elsoz }}-T_{\text {ref }}}{T_{\text {eksoz }}-T_{f, \text { sst }}}\right)$
Yukarıdaki eşitliklerde, $T_{f, s o g ̆}$ soğurmalı soğutma cihazının jeneratöründeki akışkanın işletme sıcaklığı, $T_{f, \text { sstt }}$ mahal ısıtma sistemindeki akışkanın işletme sıcaklığı, ve $T_{\text {ref }}$ referans sıcaklığıdır. $T_{f, \text { soğ }}$ ve $T_{f, \text { sstı }}$ 'ın, sırasıyla soğutmadaki ve isıtmadaki isı eşanjörüne giren akışkan sıcaklığını gösterdiğine dikkat edilmelidir. $\xi_{X H}, C O P_{\text {soğ }}$ ve $\eta_{\text {sst }}$ simgeleri sırasıyla; eksoz gazından isı kazanan is1 eşanjörünün verimini, soğutma sisteminin COP'sini ve mahal isıtma sisteminin verimini göstermektedir.

Atık Isının Değerlendirilmesi

"Atık ısının değerlendirilmesi" ile ilgili (R) indisi şu şekilde tanımlanmıştır: t_{l} 'den t_{2} 'ye kadarki belirli bir zaman içersinde kazanılan gerçek atık isının, yerinde güç üretim sisteminin 1sı çıktısına oranıdır.

Soğutma ve isıtma sistemleri için geri kazanılan enerji, aşağıdaki denklemlerden hesaplanır;
$\dot{Q}_{\text {gerik.sŏ̆ }} \cong \xi_{H X}\left(\dot{m} c_{p}\right)_{e k s o z}\left(T_{e k s o z}-T_{f, s o \check{g}}\right)=\frac{\dot{Q}_{\text {soğ.yïkü }}}{C O P_{s o \check{g}}}$
$\dot{Q}_{g e r i k . s s t t} \cong \xi_{H X}\left(\dot{m} c_{p}\right)_{e k s o z}\left(T_{e k s o z}-T_{f, s s t t}\right)=\frac{\dot{Q}_{\text {sst. } \mathrm{yiki} i}}{\eta_{\text {tstt }}}$
Bu çalışmada, sıcak kullanım suyu hazırlanması için güç üretim sisteminin eksoz gazından doğrudan 1 sı geri kazanımı söz konusu edilmemiștir. Buna karşın, soğutma/isıtma sistemlerinin eşanjöründen çıkan eksoz gazı sıcak su üretiminde kullanılabilir (Şekil 1).
$\dot{Q}_{\text {gerik.s.suyu }} \cong \xi_{H X}\left(\dot{Q}_{\text {elsozz }}\right)_{p . g \text { gen }} \frac{\left(T_{\text {eksoz,HX }}-T_{f, \text { ser.syyu }}\right)}{T_{\text {eksoz }}-T_{\text {ref }}}$
Burada, T_{f},sersuyu, sıcak servis suyu hazırlama sisteminin işletme sıcaklığı ve $\mathrm{T}_{\text {eksozHX }}$, isıtma ve soğutma sistemleri için kullanılan ısı geri kazanım eşanjöründen çıkan gazın sıcaklığıdır. Isıtma yada soğutma sisteminden hangisinin devrede olmasına bağlı olarak, isı eşanjörüne giren akışkanın sıcaklığı (sırası ile $\mathrm{T}_{f, \text { soğ }}$ yada $\mathrm{T}_{\text {f.sst }}$) $\mathrm{T}_{\text {eksozHX }}$ 'e yaklaşır. Eşitlikler 4a, 4b, 6a, 6 b ve 7'nin; eksoz gazının sabit basınçtaki özgül ısının sabit olduğu varsayımına dayandığına dikkat edilmelidir.

Sistem Verimi

BIG sisteminin toplam Birinci Yasa verimi aşağıdaki gibi hesaplanır;
$\eta_{C H P}=\frac{\sum_{i=t_{1}}^{t_{2}}\left(\dot{E}_{p . g e n}+\dot{Q}_{\text {toplam.gerik }}\right)_{i}}{\sum_{i=t_{1}}^{t_{2}} \dot{Q}_{p . \text { genyak }, i}}$

Yukarıdaki verim ifadeleri sırası ile BIG sisteminin elektrik ve isı üretim verimleridir.
$\eta_{C H P}=\frac{\sum_{i=t_{1}}^{t_{2}}\left(\dot{E}_{p . \text { gen }}+\dot{E}_{\text {sebeke }}+\dot{Q}_{\text {toplam.gerik }}+\dot{Q}_{\text {yar.tst }}\right)_{i}}{\sum_{i=t_{1}}^{t_{2}}\left(\dot{Q}_{p . \text { genyak }}+\dot{Q}_{\text {merk.santryak }}+\dot{Q}_{\text {yardyak }}\right)_{i}}$
Eşitlik (8) ve (9) için verilen tanımlar hem elektrik hem de isı yükünü izleme modellerine uygulanabilir. Şebekeden bağımsız olarak elektrik yükü izleyen BIG sistemi durumunda,
hem $\dot{E}_{\text {grid }}$ hem de $Q_{\text {cent. plant. fuel }}$ ifadelerinin sıfır olduğuna dikkat edilmelidir. Birden fazla enerji türü (elektrik ve 1sı) söz konusu olduğunda eşitlik (8) ve (9)'daki verim tanımlamalarının enerjinin kalitesine (ekserji) duyarsız kalmalarının Birinci Yasanın doğasından gelen tipik bir zayıflık olduğunu da vurgulanmalıdır.

Parametrik Değişimler

Tablo 1 parametrik analiz için dikkate alınan senaryoları özetlemektedir.Bu senaryolar önceki çalışmada ele alınan senaryolarla özdeştir (Jalalzadeh-Azar 2003). Bu senaryoların gerekçeleri aşağıdaki şekilde açıklanabilir:

PG1 ve PG2 senaryolarının amacı, temel sistemdeki mikro türbinlerin yakıt-enerji dönüşüm verimlerinin toplam sistem üzerindeki etkilerini araştırmaktır. Bu iyileştirmeler kuramsal olup, daha verimli mikro türbinlerin şu anda piyasada mevcut olduğu anlamına gelmemelidir.

Şekil 3. BIG Sisteminin ve toplam sistemin sinurlarl
Bununla birlikte, bina yükleri ve diğer bütün enerji değerleri normalize edildiklerinden (boyutsuzlaştırıldıklarından) baz mikro türbin teknolojisinden piyasada mevcut daha verimli gaz türbinleri teknolojisine geçiş anlamı da çıkartılabilir. PG3 senaryosu, toplam sistem performansı açısından, güç üretim verimi ile eksoz sıcaklığı arasındaki çakışmayı incelemek için tasarlanmıştır. PG3'e iç kazanımı olmayan PG2 olarak bakılabilir.
$\mathrm{AC} 1, \mathrm{AC} 2$, ve AC 3 senaryoları, daha verimli soğurmalı soğutma sistemlerinin kullanımını temsil etmektedir. AC1 senaryosu, çevre sıcaklığına bağımlı COP'yi 1.2 ile çarpmayı önerir. Bu senaryo, rejenerasyon sıcaklığını etkilemeksizin \% 20 daha verimli tek kademeli bir chiller kullanımını ifade eder. Sırasıyla AC2 ve AC3; \% 40 ve \% 60 daha verimli, çift etkili soğurmalı chiller ile daha yüksek bir çalışma sıcaklığını temsil etmektedir (Tablo 1).

BE1 senaryosu, toplam elektrikli cihaz veriminin azalmasının sistem performansı üzerindeki etkisini araştırmayı amaçlar. Bu senaryoya göre, istenen çıktıyı etkilemeksizin elektrikli cihazların toplam veriminde \% 20 bir azalma yapılabileceği varsayılmaktadır. Binanın soğutma gereksinimi üzerinde, elektrikli cihazların verimlerindeki olası bir değişme etkisinin ihmal edildiği unutulmamalıdır.

4. Sonuç ve Tartışma

Parametrik Analiz

Şekil 4 ve 5, daha önce açıklanan (Tablo 1) senaryolar için elde edilen parametrik analiz sonuçlarını göstermektedir. Bu tabloda gösterilenler, normalize edilmiş yıllık enerji tüketimi (Eşitlik 1), yerinde enerji üretim sisteminin normalize edilmiş yıllık toplam enerji tüketimi, ve Eşitlik 5 ile açıklanmış bulunan atık 1 sı kullanım faktörü (R)'dir. Şekil 4'de yıllık enerji miktarlarının normalize edilmiş değeri, bu çalışmadaki temel sistemin yıllık enerjisidir. Söz konusu isı yükünü izleyen BIG sistemi ile önceki makalede (Jalalzadeh-Azar 2003) elektrik yükünü izleyen BIG sistemi arasında karşılaştırma yapabilmek için; Şekil 5'deki normalize edilmiş referans noktası, bu çalışmadaki baz sistemin yıllık toplam enerji tüketimi olarak alınmıştır. Şekil 4 ve 5'de, toplam enerji girdisi ile yerinde üretilen enerji tüketimi arasındaki fark, şebekeden enerji girdisi ile kullanım sıcak suyu üretiminde kullanılan yardımcı enerji tüketiminin toplamını ifade eder. Gerekli yardımcı enerji kullanımı bütün senaryolarda \% 1'den düşüktür).

Güç üretimi. Şekil 4, yerinde güç üretim sistem veriminin arttırılmasının toplam enerji tüketimi üzerinde önemli bir etkisi olduğunu

Şekil 4. Isı Yükünü İzleyen BIG Sistemi Yıllık Performansının Parametrik Değerlendirmesi

Şekil 5. Farklı bir normalizasyon referans noktasına göre lsı yükünü izleyen BIG sisteminin performans değerlendirmesi.
göstermektedir. Yerinde güç üretim verimi \% 20ve \% 40 kadar artırıldığında, enerji tüketimindeki azalma \% 10 ve \% 21 düzeyindedir. Dahili bir kazanım olmaması durumundaki PG2'ye eşit olan PG3 senaryosunda, enerji tasarrufu sadece \% 10 olup, bu PG2'deki \% 21 le karşılaştırılabilir. Bu durum, PG3'deki atık ısı kullanımı PG2'dekinden daha fazla olmasına rağmen ortaya çıkmaktadır. Elde edilen bu sonuçlar, daha önceki elektrik yükünü izleme sistemine ilişkin çalışma verileri ile uyumludur.

Şekil 5 toplam enerji tüketimi açısından, 1Sı yükünü-izleme sisteminin elektrik yükünü izleme sisteminden daha üstün olduğunu ortaya koymaktadır. Örneğin 1 sı yükünü izleyen ve Şekil 1'de gösterilen sistemin toplam enerji tüketimi, elektrik yükü izleme sistemine oranla yaklaşık \%11 daha azdır. Böyle bir avantajın temel nedeni, 1 sı yükü izleme sisteminde atık ısının değerlendirilmesidir.

Şekil 6. Güç üretim senoryalarında net elektrik ithalinin değişimi.

Şekil 7. Soğutma senoryalarına göre net enerji ithalindeki değissmeler.

Şekil 8. Elektrikli ekipman senoryaları için net elektrik ithalindek değismeler.

Şekil 9. Baz sistemin ısı yükünü izleme modelinde birinci yasa verimlerinin değerlendirilmesi.

Şekil 6'da PG1, PG2, PG3 senaryoları için merkezi elektrik şebekesinden alınan enerji miktarı, baz sistemin şebekeden aldığı enerji ile karşılaştırılmaktadır. Her üç senaryoda ve baz sistemdeki aylık toplam enerji yükü aynıdır. Şekil 6 daki normalize etmenin referans noktası toplam elektrik yükünün aylık ortalamasıdır. Elektrik enerjisi alımı eğrilerinin eğilimi, binan 1sı yükündeki aylık ve mevsimlik değişmelerle uyumludur (Şekil 2). Soğutma mevsimindeki yüksek yükler bağlamında, BIG elektrik üretimi gereken 1sı yükünü karşılamak üzere artırılmalıdır. Bu, özellikle Haziran,Temmuz ve Ağustos aylarında önemli bir enerjinin şebekeye geri verilmesini sağlar.

Şekil 6'dan görüleceği üzere, yerinde güç üretiminin \% 20 (PG1) ve \%40 (PG2) artırılmas1 ile özellikle yaz aylarında enerji tüketimi azalmaktadır (Bunun, talep bedellerinde ve soğutma mevsiminde pik elektrik yükünde azalma anlamına geldiği unutulmamalıdır). Buna karşılı, PG3 senaryosunda, şebekeden aylık elektrik alımı baz sisteminkini yakından izler.

Soğurmalı (Absorpsiyonlu) Soğutma Çevrimi. Diğer parametreler sabit kalmak koşulu ile tek-etkili absorpsiyonlu soğutma sistemi COP'sinin \% 20 artırılması ile (AC1), toplam enerji tüketiminde temel-sisteme göre azalma \% 2 düzeyindedir (Şekil 4). AC2 ve AC3 senaryoları için çift etkili absorpsiyonlu soğutma teknolojisini benimseyerek, baz sisteme göre sırasıyla \% 3.5 ve \% 5.5 enerji tasarrufu elde edilir. Soğutma COP'lerinin \% 40 ve \% 80 artırıldığ 1 düşünüldüğünde, bu tasarrufların orantılı biçimde önemli olmadığı düşünülebilir. Soğutma performansındaki artışa kıyasla zayıf bir tasarruf artışının iki temel nedeni bulunmaktadır. Birincisi, $C O P$ artışı ile elde edilen her hangi bir yararın, şebekeden enerji alımındaki artışla dengeleniyor olmasıdır. Isı yükünü izleme modelinde, absorpsiyonlu soğutma COP'sindeki herhangi bir artışın ısıl enerji talebini ve bağlı olarak güç üretimini azaltır. Buna göre, BIG/şebeke veriminin azalmasına yol açan daha fazla elektrik enerjisinin şebekeden alınması durumu ortaya çıkar (Şekil 9) İkinci konu ise, $C O P$ artımlarının sadece soğutma mevsimlerini kapsaması ve bütün bir yıl temelinde olmamasıdır. AC1, AC2 ve AC3 senaryolarının gerçekleştirilmesi ile elde edilen enerji tasarrufları elektrik yükünü izleme modelinde daha da düşüktür (Jalalzadeh-Azar 2003).

Şekil 7'de AC1, AC2 ve AC3 senaryolarındaki absorpsiyonlu soğutma performansının artırılmasına, normalize edilmiş elektriğin şebekeden alınmasına verdiği tepkinin duyarlılığ ${ }_{1}$ gösterilmiştir. Bu şekilde normalize edilmiş referans noktası, Şekil 6'daki ile aynıdır. Güç üretim senaryolarındaki gözlemlerden farklı olarak, soğutma performansının iyileştirilmesi, soğutma mevsiminde net enerji ithalini artırma eğilimindedir (Şekil 7). Bunun sonucu elektrik çıktısında bir azalma ve buna bağlı olarak isı yükünü karşlama yeteneğinde bir düşüştür. Sonuç olarak, daha verimli soğutma sistemleri ile, makinenin daha küçük seçilmesi beklenebilir.

Burada elde edilen bulguların, BIG uygulamalarında, çift etkili absorpsiyonlu soğutucular gibi ileri teknolojilerin kullanımının önemini azaltmadığı unutulmamalıdır. Bunun tersine, yerinde güç üretimini daha düşük bir isı/elektrik üretimi oranına sahip ve daha verimli soğutma sistemlerini kullanan BIG sistemleri daha karlıdır. Bu tür avantajlı teknolojiler, şebekeye elektrik geri verilmesinin ekonomik yönden özendirici olmadığı ve bu nedenle yerinde elektrik üretiminin sınırlı olduğu durumlar için de önerilebilir.

Elektrikli Cihazlar. Elektrikli cihaz verimlerinin toplam sistem performansı üzerindeki etkisi senaryo BE1'de araştırılmıştır. Şekil 4, elektrikli cihaz verimlerinin \% 20 kadar artırılması durumunda (BE1), baz sisteme oranla binanın toplam enerji tüketiminde $\% 17$ gibi bir azalma gerçekleştirilebileceğini göstermektedir. Senaryo BE1'in uygulanmass ile elde edilecek olan enerji tasarrufu potansiyeli elektrik yükünü izleme modeli ile hemen hemen aynıdır (Jalalzadeh-Azar 2003). Bu ölçüm sonucu elektrik yükünü izleyen BIG sistemleri için yerinde güç üretim sisteminin daha küçük seçilebilme olanağı yönünde bir potansiyel sergilediği kabul edilse bile, 1 ss yükünü izleyen BIG sistemi için böyle bir durum söz konusu değildir. Buna karşılık, elektrik yükünde bir azalma demek olan elektrikli cihaz verimlerinin artırılması şebekeden net elektrik alımında bir azalmaya yol açar.

Şekil 10. Elektrik yükünü izleme modelinin birinci yasa veriminin değerlendirilmesi.

Şekil 11. Isl yükü izleme yönteminde şebeke dağıtım veriminin etkisi.
Şekil 8 1sı yükünü izleme modelinde baz sistem ve BE 1 senaryosu için normalize edilmiş elektrik yükünün ve şebekeden net elektrik gücü alımının aylık değişimlerini göstermektedir. Normalizasyon referans noktası Şekil 6'dakinin aynıdır. Şekil 8, Nisan ayından itibaren sonra soğutma yükünün hızlı artışı ile birlikte (absopsiyonlu sistemin 1sı yükü artmaktadır) net elektrik enerjisi alımının düşmeye başladığı görülmektedir. Haziran, Temmuz, Ağustos aylarını kapsayan pik soğutma mevsimi (absopsiyonlu sistemde pik 1sı yükü) boyunca, BE1 senaryosu, şebekeye net elektrik enerjisi geri verilmesini mümkün kılmaktadır.

Baz sisteme ilişkin, net elektrik enerjisi geri verme durumu Temmuz ve Ağustos aylarında daha düşük düzeyde seyretmektedir. Şebekeden elektrik enerjisi alımı 1sı yükünün en düşük olduğu Kasım ayında en üst düzeydedir (Şekil 2). Daha önce belirtildiği gibi, 1sı yükünü izleme modelinde, isı yükünün azlığı yerinde enerji üretiminin de düşük seviyede olması demektir.

Şekil (9) ve (10), yük izleme sistemi için iki ayrı baz BIG sisteminin aylık verimlerini göstermektedir. Bu şekillerde gösterilenler, elektrik üretimi, isı üretimi ve toplam BIG verimleri ile, Eşitlik (8)'de ve Eşitlik (9) da tanımlanan BIG/Şebeke sistem verimidir. Isı yükünü izleme modelinin (Şekil 9) 1sı üretimi ve toplam verimleri, elektrik yükünü izleme
modeline kıyasla (Şekil 10) sabit değerlere sahiptir. Bu davranış, isı yükünü izleme modelinin karakteristiğidir. Şekil 9'daki söz konusu verimlerde gözlemlenen çok küçük değişmeler, çevre havası koşullarının ve kısmi yük koşullarını bir fonksiyonu olan, elektrik üretim verimindeki değişimin sonucudur. Elektrik yükünü izleme koşulunda, isıtma mevsimindeki düşük 1 sı üretim verimlerinin görülme nedenleri (\%15'den az); (1) 1s1 taleplerine oranla fazla miktarda atık ısının bulunması, (2) 1sı ve elektrik yüklerinin eş zamanlı olma olasılığındaki azlıktır. Pik soğutma mevsiminde bile, isı üretim veriminin isı yükünü izleyen BIG modelinin en düşük verimi olan $\% 50$ den bile az olan $\% 42$ düzeyindedir (Şekil 9). Yüksek isı üretim verimleri nedeniyle, ısı yükünü izleme BIG modeli yıl boyunca yüksek bir toplam BIG verimini gerçekleştirir. Buna karşın, iki yük izleme modeline ilişkin elektrik üretim verimlerinin arasındaki göreceli fark önemsiz bir seviyededir.

Isı yükünü izleme BIG modelinin toplam sistem verim eğilimi (Şekil 9), ısı yükü arttıkça azalan şebekeden elektrik enerjisi alımına bağlıdır.Temmuz ve Ağustos aylarındaki toplam sistem (BIG/şebeke) verimi, Eşitlik (8) ve (9) ile doğrulanabileceği üzere, bu aylardaki toplam BIG verimlerini aşmaktadır. Şekil 10'da gösterilen şebekeden bağımsız ısı yükünü izleme sistemi için, toplam sistem verimi yardımcı yakıt girdilerini de içerir (Eşitlik 9 ve
$\left.\dot{E}_{\text {şebeke }}=\dot{Q}_{\text {merk.santryak }}=0\right)$.

Şebeke Elektriǧinin Etkisi

Yukarıda elde edilen sonuçlar, iletim ve dağıtımdaki bütün kayıplar da dahil olmak üzere şebeke elektriği veriminin \%30 ($\eta_{\text {grid }}$) olduğu varsayımına dayanmaktadır. Buna karşılık, bir merkezi tesisin enerji üretim verimleri, gelişmiş gaz türbinleri ve birleşik çevrimler gibi ileri teknolojilerle daha yüksek verimlere sahip olması beklenir. Gerçekte, 2005 için ulusal ortalama $\% 31.8$ ve 2025 'de $\% 34.4$ 'e ulaşması planlanmıştır (ABD DOE 2003). Şekil 11 birleşik BIG/Şebeke sistem verimi üzerinde şebeke veriminin etkisini göstermektedir. Bu şekil bütün senaryolar için \%25, \%30 ve \%35 şebeke verimlerinde toplam sistem için birincil enerji tüketim verimlerini göstermektedir. Bu şekilde, normalizasyon referans noktası, şebeke veriminin \% 30 olduğu durumdaki baz sistemin toplam birincil enerji tüketimidir. Şekil 11'e göre, toplam enerji tüketiminin şebeke verimine olan hassasiyeti, yerinde enerji üretim verimi PG1 ve PG2 senaryo verimlerine yaklaştıkça azalmaktadır. Bu tür bir eğilim, binanın cihaz enerji veriminin iyileştirildiği BE1 senaryosunda da gözlemlenmektedir. Bunun nedeni, PG1, PG2 ve BE1 senaryolarında, sistemin şebekeye bağımlılığının azalması ve şebeke veriminin etkisinin de buna bağlı olarak etkisini kaybetmesidir. Şebeke verimindeki her hangi bir artış, en çok AC1, AC2 ve AC3 soğutma senaryolarının yararına olmaktadır.

Sistemin Boyutlandırılması

Isı yükünü izleyen baz BIG sisteminin, yerinde güç üretim kapasitesinin, şebekeden bağımsız, elektrik yükünü izleme modelindekine oranla \% 50 daha yüksek olduğu belirlenmiştir. Bunun anlamı, bu makaledeki sanal uygulama için isı yükünü izleyen BIG sisteminin de şebekeden bağımsız olarak kullanılabileceği demektir. Bununla birlikte, absorpsiyonlu soğutma performansındaki bir iyileştirme 1s1 yükünü izleme modelinde güç üretim biriminin daha küçük boyutlandırılması sonucunu getirebilir. Genelde, binanın isı/elektrik yük oranı seçilen güç üretim teknolojisinin 1s1/elektrik oranına yaklaştıkça iki BIG modeli arasındaki boyut farkı da kaybolur. Bu bulguların ekonomiye yansımaları, gerçek uygulamalardaki BIG sistemlerinde dikkate alınmalıdır.

5. Sonuçlar

Bu makalenin amacı, isı yükünü izleme BIG sistemlerinin bir termodinamik analizini ve elde edilen sonuçların daha önce araştırılmış bulunan şebekeye bağımlı elektrik yükünü izleme modeli ile karşılaştırmasını yapmaktır. Her iki çalışmada da aynı kuramsal binayı kullanmak, iki BIG sisteminin karşılaştırılmasında kolaylık sağlamıştır. Öncekine benzer bir parametrik analizle, alt sistem verimlerinin değişmesi ile toplam sistem performansı üzerindeki etkiler değerlendirilmiştir. Her iki sistem de baz sistem, mikro türbinler, tek etkili absorpsiyonlu soğutma, mahal isıtması ve sıcak servis suyu üretimini içermektedir. İki sistemde de, Birinci Yasa verimleri değerlendirilmiş ve tartışılmıştır. Ayrıca bir toplam sistem verimi de tanımlanmış ve her iki sisteme de uygulanmıştır. Isı yükünü izleme modeline ilişkin çalışmada toplam sistem, BIG-şebeke etkileşimini de içermektedir. Bu koşul için, elektrik şebekesindeki toplam verimin etkisi de ele alınmıştır. Şebekeden bağımsız olarak elektrik yükü izleyen diğer BIG sistemininin değerlendirmesinde gerekli yardımcı brülörlerin işletmesi de göz önünde tutulmuştur.

Is1 yükünü izleme sisteminin parametrik analizi, yerinde güç üreten sistem verimindeki bir iyileştirmenin sistemin yıllık toplam sistem performansı üzerinde önemli bir etkiye sahip olduğunu göstermiştir. Bu analiz aynıca, geri kazanımlı mikro türbin, gaz türbini kullanmanın daha avantajlı olduğunu da göstermiştir.

Bununla birlikte, bu çalışmada göz önüne alınan sanal bina için, daha yüksek verime sahip bir absorpsiyonlu soğutma sistemi kullanmanın olumlu etkileri beklendiği kadar olmamıştır. Bu gözleme rağmen, şu noktalar vurgulanmalıdır: (1) absorpsiyonluı bir soğutma sistemi kullanmaksızın, yüksek soğutma yüklerine sahip sistemlerde BIG sisteminin tüm potansiyeli gerçekleştirilemez; (2) tartışmasız bir biçimde, yerinde güç üretimi sisteminin önemli ölçüde düşük 1 s1elektrik oranı sunduğu durumlarda, çift etkili bir absorpsiyon soğutmanın kullanılması yararlıdır.

Sistemin toplam birincil enerji tüketimi de, elektrikli cihaz yükündeki azalmaya önemli bir duyarlılık sergilemiştir. Bu sonuçlar, daha önce incelenmiş olan elektrik yükü izleme modelinden elde edilen veri ve sonuçlarla uyumlu bulunmuştur. İki modelin karşılaştırılması, 1sı yükünü izleme modelinin daha yüksek bir atık enerji kullanım potansiyeline sahip olduğunu göstermiştir.

Baz sistem BIG için, şebekeye net elektrik geri verilmesi, isı yüklerinin en yüksek olduğu Temmuz ve Ağustos aylarında ortaya çıkmıştır. Daha verimli bir güç üretim sisteminin kullanılması ile, aylık şebekeden net elektrik enerjisi alımıı önemli ölçüde azalmış ve soğutma mevsimlerinde şebekeye daha fazla enerji geri verilebileceği ortaya çıkmıştır. Absorpsiyonlu soğutmayı içeren senaryolarda aksi etkiler görülmektedir. Soğutma performansındaki her hangi bir iyileştirme, isıl talepteki azalma nedeniyle daha yüksek enerji alımına yol açmaktadır. Böylece, 1 sl yükünü izleme BIG sistemlerinde daha verimli bir absorpsiyonlu soğutmanın kullanılması, ancak şebekeden enerji satın almanın ekonomik olarak özendirici olması durumunda avantajlı olabilecektir. Bu bulgular 1s1 yükünü izleme sisteminin karakteristikleridir.

Is1 yükünü izleme modelinin aylık BIG verimleri yıl boyunca tipik olarak hemen hemen sabit kalmıştır. Tersine, elektrik yükünü izleyen BIG sisteminde, yüksek pik soğutma mevsimlerinde ortaya çıkan yüksek verimlerde, ciddi bir mevsimsel değişme gözlemlenmiştir. Toplam sistem verimlerinde olduğu gibi, her iki modelin eğilimleri benzer
olsa bile, 1s1 yükünü izleme modeli üstünlüğünü ortaya koymuştur. Bu performans karşılaştırmalarının yararlı olmasına rağmen, her hangi bir karar verme sürecinde ekonomik analizlerin yapılması da bir zorunluluktur.

Bu çalışma, şu varsayımlara dayandırılmıştır: (1) bina yükünü aşan yerinde elektrik gücü üretiminin tamamı şebekeye geri verilmektedir, (2) fazla enerjinin şebekeye geri verimi, merkezi santrallerdeki birincil enerji tüketimini değiştirmektedir. Daha geniş uygulamalar yelpazesine ve iki BIG modelinin ekonomik analizine yönelik başka araştırmalara gerek vardır.

6. Simgeler

$C_{p} \quad=$ sabit basınçtaki özgül isı
$\operatorname{COP}_{c} \quad=$ soğutma sisteminin performans (tesir) katsayısı
$\dot{E} \quad=$ elektrik gücü
$\dot{m} \quad=$ kütlesel akış debisi
$Q \quad=$ birim zamandaki 1sı (1sıl yük)
$T \quad=$ sicaklık
$t \quad=$ zaman
$\beta \quad=$ elektrikli cihaz verimi
$\eta \quad=$ birinci yasa verimi
$\xi \quad=$ isı eşanjörü etkinliği

Alt İndisler	
soğ	$=$ soğutma
eksoz	$=$ eksoz gazı
f	$=$ işletme akışkanı
gerik	$=$ geri kazanım
isit	$=$ isitma
ser.suyu	$=$ kullanım (servis) sıcak suyu
HX	$=1$ sı eşanjörü
p.gen	$=$ yerinde güç üretimi
ref	$=$ referans
merksantr	$=$ merkezi güç santrali
şebeke	$=$ enterkonnekte (merkezi) elektrik üretim,
	iletim, dağıtım sistemi
gen	$=$ genel
yak	$=$ yakıt
yar	$=$ yardımcı sistem
yanma	$=$ yakıtın yanması

7. Kaynakça
[1] ASHRAE 2002.2002 ASHRAE Handbook-Refrigeration, Chapter 41, Atlanta; ASHRAE, Jalalzadeh-Azar, A.A. 2003. A parametric analysis of a grid independent BCHP system: Focusing on impact of technological advancements. ASHRAE Transactions 109 (2) Atlanta ASHRAE,
[2] NREL-LBNL. 2002. Energy-10 A tool for designing low energy buildings incorporating weathermaker. National Renewable Energy Laboratory / Lawrence Berkeley National Laboratory, Version 1.5.
[3] U.S. DOE. 2003a. Office of Energy Efficieney and Renewable Energy, U.S. Department of Energy. (2003) The Gren Power Network-Net Metering Policies. Washingtion, D.C. (http://www.eere.energy.gov/greenpower/netmetering/index.html).
[4] U.S. DOE. 2003b Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. (August 2003) Buildings Energy Databook, Office of Building Technology, Washington, D.C.
[5] Wan, Y. 1996 Net Metering Programs, NREL/SP-460-21651, Topical Issues Brief, National Renewable Energy Laboratory, Golden, Colo.

Yazar;

Prof. Dr. Ali A. Jalalzadeh
ABD'nin NREL (National Renewable Energy Laboratory)'de Yüksek Mühendis olarak çallşıyor ve birleşik lsı ve güç (CHP) sistemleri konusunda bir araştırma yönetmektedir. CHP ve HVAC alanında analitik, deneysel ve yerinde yürütülen projeler yöneticiliği yapmıştır. 2005 yılında CHP konusunda iki makalesi nedeniyle ASHRAE Crosby ödülü aldı. ASHRAE ve ASME üyesidir.

Isıtma, Soğutma Temini ve Elektrik Güç Üretiminin Birarada Gerçekleştiği Ekonomik, Çevre Dostu Teknoloji : Tri-Jenerasyon

The Economic Green Technology That Provides The Heat, Cooling and Electrical Power All Together: Tri-Generation

Gökmen Topuz; Elk. Müh.

ÖZET

Bu çallşmada, öncelikle, elektrik gücünü ve ısıyı aynı anda üreten kojenerasyon teknolojisinden yararlanılarak yapılan, isttma-soğutma ve elektrik güç üretimini simgeleyen Tri-jenerasyon (üçlü üretim) sistemlerinin ticari yapılarda ve meskenlerdeki uygulamaları incelenmektedir. Bu çerçevede, on yılı aşkın bir sürede Ülkemizde gelinen nokta özetlenmekte, gelecekteki kojenerasyon uygulamalarının çok kazançlı örneklerinin konutlar, oteller, hastaneler, üniversiteler gibi uygulamalarla nasıl yaygınlaşabileceği irdelenmektedir.

ABSTRACT

This abstract is about the application of TriGeneration (triple production) system in both commercial and domestic buildings. The TriGeneration system is the system that produces heating-refrigerating and electric power all together by using the cogeneration technology. In this context, the improvement of this technology's use in our country in last ten years is shown and with the examples of cogeneration applications, the ways of expanding the use of this system in domestic buildings, hotels, hospitals and universities is analyzed.

1. Tri-Jenerasyon Sistemleri ve Avantajları Isıtma-soğutma taleplerinin karşılanması ve eşzamanlı olarak elektrik gücünün aynı sistemde üretilmesi anlamını taşıyan Trijenerasyon yöntemi ile kullanılan yakıt, kışın sitma ve elektrik gücü üretiminde $\% 90 \mathrm{a}$, yazın soğutma ve elektrik gücü üretiminde \%70'e ulaşan toplam verimlerde kullanılabilmektedir.

Böylelikle, sanayi tesisleri, oteller, hastaneler, toplu yerleşim bölgeleri, alışveriş merkezleri, yükseköğretim kampüsleri,

Şekil 1. Tri-Jenerasyon Prensip Şeması.
seralar gibi elektrik gücü yanısıra isitma buhar veya sicak su gibi proses 1sisı ve/veya soğutma talebi bulunan tesislerde kurula bilen kojenerasyon ve tri-jenerasyon tesisleri ile şebekedeki elektrik enerjisine oranla daha ucuz, kaliteli ve kesintisiz enerji üretim mümkün olmaktadır.

Ülkemizde daha çok sanayi sektöründe görülen kojenerasyon teknolojisi, ülke genelinin \% 51 oranındaki elektrik enerjisinin tüketildiği, ticarethane ve meskenlerde halen kullanıma kazandırılamamıştır. OECD nin son çevre raporuna göre, küresel $1 \mathrm{~s} ı n$ maya neden olan Karbondioksit gazı emisyonlarının öncelikle bu sektörlerde azaltılması yönünde kojenerasyon ve tri-jeneras yon teknolojilerinin katkıları sanayi uygulamalarına göre çok daha büyük öneme sahiptir.

Ulkemizdeki kapalı hacim ısıtma ve soğutma yükleri halen alışılmış HVAC sistemleri ile karşılanmakta, hatta, merkezi isitma ve soğutma sistemlerinden hızla uzaklaşılarak, bireysel isitma ve soğutmaya yönelik klima ve kombi cihazların kullanımı artmaktadır Evler, iş yerleri gibi isı ve elektrik güç taleb bir arada olan yapılarda, bireysel komb
cihazları ve klima tesisleri yanında yılda sadece toplam 50 saat dolayındaki elektrik kesintilerinde kullanılan jeneratörler yerine, bu cihazlara yapılacak toplam yatırımın üç katı bir yatırım (acil durum jeneratör seti, kombi ve klima cihazları toplam birim yatırımı 200 Euro/kW iken bir tri-jenerasyon tesisinin yatırımı 600 Euro/kW dolayındadır) yapılarak, tri-jenerasyon sistemleri ile merkezi isitma ve soğutma gerçekleştirilirken yıl boyu elektrik güç talebi, kaliteli (gerilim ve frekans dalgalanması olmadan) ve ekonomik olarak üretebilir, bu avantajlar sonucu yatırımlar kısa sürede geri kazanılabilir: tri-jenerasyon sistemlerine yapılan yatırım ile, yatırımcılar evlerinde, iş yerlerinde 1 Sı ve elektrik gücünü mevcut maliyetlerine göre $\% 50$ dolayında daha ucuza mal edebilecekleri gibi yatırımlarını 2-3 sene gibi kısa bir sürede geri kazanabileceklerdir.

Bu yatırımlar sonucu, doğalgaz, petrol gibi primer enerji kaynaklarını yurtdışından ithal etmek zorunda olan Ülkemiz'de aşağıda özetlenen tasarruf ve faydalar sağlanacaktır.

- Isı ve elektrik gücü $\% 90$ dolayındaki bir toplam verimle üretildiginden, primer yakıt tasarrufu sağlanacaktır. Örneğin,

Şekil 1. Apartmanlarda kojenerasyon uygulamasının karikatüristik gösterimi.
aynı miktar 1 is1 enerjisi ve elektrik gücü ayrı sistemlerde üretildiğinde, toplam primer yakıt tüketimi en az \% 10 daha fazla olmaktadır.

- Kojenerasyon ve tri-jenerasyon sistemlerinde elektrik gücü tüketildiği yerde üretildiği için, iletim ve dağıtım hatları, ve bunlarla ilgili enerji kayıpları söz konusu değildir.
- Emisyon değerlerinin düşüklüğünden dolayı çevrenin etkin bir biçimde korunmasına katkıda bulunacaktır.

2. Tri-jenerasyon Sisteminin Apartmanlarda Uygulanmasi:

Tipik bir uygulamada, makine dairesine yerleştirilmiş bir içten yanmalı motorlu veya gaz türbinli kojenerasyon tesisi ile, doğal gaz, LPG, CNG, Biyodizel gibi yakıtlar kullanılarak, elektrik gücü ve $70 / 90^{\circ} \mathrm{C}$ sıcak su üretilmektedir. Elektrik gücü ve sıcak su bina içindeki ana dağıtım hattından her bir tüketiciye ulaştırılmaktadır.

Tüketicilerin konut girişlerine yerleştirilecek, elektrik ve 1 s 1 sayaçları ile tüketicilerin ne kadar ısı ve elektrik enerjisi tükettiği hassas bir şekilde ölçülerek belirli zamanlarda, örneğin, ay sonlarında kendi gerçek tüketimleri oranındaki gider payları kendilerinden tahsil edilecektir.

Kış aylarında elektrik gücü ve sıcak su üreten kojenerasyon tesisi, yaz aylarında aynı makine dairesine yerleştirilmiş olan ve kojenerasyon ünitesinin elektrik gücü üretirken eşzamanlı olarak ürettiği sıcak su
ile çalışan absorpsiyonlu soğutucu ünite ile yazın $7 / 12^{\circ}{ }^{\circ}$ 'de soğuk su üreterek, soğutma talebini de karşılayacaktır. Üretilen ısının bir kısmı gene sıcak servis suyu olarak tüketicilere verilir. Bu durumda, kojenerasyon tesisi, tri-jenerasyon tesisi haline dönüşür. Tri-jenerasyon sistemlerindeki temel tesisat farklılığı, döküm yada diğer radyatörler yerine yerden, duvardan veya tavandan panel isitma-soğutma ve veya fan-coil'lerin kullanılmalarıdır. Bunu ana nedeni, isitma ve soğutma fonksiyonlarının aynı terminal ünitelerden yapılabilme gereğidir. Tüketicilerin ne kadar soğutma enerjisi tükettiği amaca uygun bir ısı sayacı ile ölçülerek gerçek gider payları kendilerinden tahsil edilecektir.

Böyle bir sistemin tüketici faturalandırılması, küçük bir maliyet farkı ile bina yöneticisi yada başka bir bağımsız yönetim kurumuna sağlanacak bir bilgisayar destekli ortamda, sayısal olarak izlenen tüketim değerlerine göre gerçekleştirilebilmektedir.

Böylece, herkes istediği kadar ekonomik ve daha verimli bir şekilde evini isitır, soğutur, elektrik enerjisi tüketir ve payına düşen bedelleri öder. Böylece, herkezin bildiği nedenlerden kaynaklanan pahalı ve daha düşük verime sahip bireysel isitma ve soğutma sistemleri yatırımı yapmaya gerek kalmaz.

3. Kojenerasyon Tesislerinin Ülkemiz Ekonomisine Kazandırdıkları.

Şebeke santrallarının çevrim verimleri,
kömüre dayalı santrallerde $\% 38^{\prime}$ den, fueloil'e dayalı santrallerde $\% 36$ 'dan, kombine çevrimli doğalgaz santralarında \%60'dan daha yüksek değildir. Oysa kojenerasyon teknolojileri ile, \%92'ye ulaşan toplam verimde elektrik gücü ve isı bir arada üretilip tüketiciye sağlandığında yakıt tasarrufu sağlanması söz konusudur. Kojenerasyon tesisleri, tüketildikleri bölgelere kuruldukları için, ülkemizde çok yüksek oranlara ulaşan iletim ve dağıtım kayıplarından etkilenmemesi gibi kazançlarından dolayı on yıllık kısa bir süre içersinde 100 kadar otoprodüktor tesisi kurulmustur.

Ülkemizde genel olarak sanayi tesislerinin elektrik enerjilerini sağlamak üzere kurulmuş otoprodüktörlerin toplam kapasitesi 4700 MW'a ulaşmış ve bir yılda üretilen özel elektrik enerjisinin $\% 17$ 'sini üretir hale gelinmiştir.

Yine de altını çizmek gerekir ki, şu andaki Türk yasaları önünde "kendi elektriğini kendi" üreten anlamında kullanılan Otoprodüktör terimi, isı ve elektrik gücünün bir arada üretilmesi demek olan Kojenerasyon tekniğinde yapılmış uygulamaların yanısıra, sadece elektrik üretmek amacı ile kurulmuş tesisleri de kapsamaktadir. Bu sebeple yukarıda bahsi geçen verilerin büyük bir kısmının kojenerasyon tesisleri olduğunu bilmekle beraber, kesin veriler şu anda elimizde yoktur.

Durum ne olursa olsun, Ülkemizdeki mevcut tesisler yüksek verimleri sayesinde yilda 10 Milyon ton kadar CO_{2} atımında azalma sağlayıp çevremizin korunmasına katkıda bulunmuştur. Ayrıca, tüketildiği bölgelerde enerji üretimi gerçekleştirdikleri için iletim ve dağıtım hatlarındaki kayıplardan oluşacak yılda 230 milyon \$ eşdeğeri elektrik enerjisi tasarruf edilmiştir. On beş yıl içersinde yaklaşık 2-2.5 milyar \$'lık enerji yatırım yükünü devletin sırtından alarak, kendi imkanları ile hiçbir devlet garantisi istemeksizin gerçekleştiren bu sistemler, Ülkemiz toplam elektrik üretimi içerisinde önemli bir üretim payına ulaşmıştır.

Ülke genelinde kojenerayon ve tri-jenerasyon sistemlerinin yüksek verimde ve etkin bir biçimde uygulanabilmeleri için bu sistem ve teknolojilerin sanayi sektörü yanısıra otel, hastane, konutlar, merkezi isitma ve soğutma, bölge enerji sistemleri, yükseköğretim ve eğitim kampüsleri gibi uygulamalarla yaygınlaştırılması gereklidir.

4. Kojenerasyon Sistemlerinin Dünyadaki Gelişimi

Gerçek anlamdaki kojenerasyon teknolojileri, sağladıkları primer yakıt tasarrufu kapsamında çevre dostu elektrik gücünü ve 1sıyı eşzamanlı olarak tüketiciye doğrudan ve tek kaynaktan sağlamaları nedeni ile, üretilen toplam elektrik enerjisinin enerji sektörü içersindeki payları Danimarka'da $\% 50$, Hollanda'da \%40, Finlandiya'da \% 35, Avusturya'da \% 26, İtalya'da \% 17 düzeyine ulaşmıştır.

Avrupa Birliği, Kyoto Protokolündeki ve Johennusburg zirvesinde yüklendikleri emisyon düşürme tahahhütlerini yerine getirebilmek için kojenerasyon ile enerji üretimini, enerji politikalarında nükleer enerjiye ağırık vermiş ülkelerin varlığına rağmen Avrupa ülkeleri genelinde ortalama \% 18 oranına çıkarmayı hedeflemiştir.

Aşağıda özetlenen ve trajik boyutlara ulaşan ekonomik kayıplar ve çevre kirlenmeleri nedenleri ile, sadece Avrupa'da değil tüm dünyada, kojenerasyon gibi yüksek verimli ve yenilenebilir kaynaklardan da elektrik gücünü ve 1sıyı eşzamanlı olarak üretebilen ve tüketiciye sunan sistemlerin, hükümetlerin verdiği teşviklerin de katkısı ile önem ve pazar paylarını arttırmaktadır.

- Dünyadaki iletim ve dağıtım kayıpları, Almanya, İngiltere, Fransa ve İspanya'daki tüm enerji talebinin toplamına denktir.
- Dünyadaki, termik santrallerin ortalama verimi \%34 düzeyindedir (Tipik kojenerasyon toplam veriminin yarısından daha az).
- Yapılan tahminlere göre, iletim-dağıtım ve üretim verimlerindeki düşüklük, her yıl 400 Milyar \$ kaybına, daha da önemlisi büyük ölçüde önlenebilir çevre kirlenmesine neden olmaktadır.

Yukarıda belirtilen kayıplardan dolayı, enerjinin tüketildiği yerde yüksek verimlerde üretilmesi gerekliliği anlaşılarak, gaz türbinleri, içten yanmalı motorlar, stirling motorları, buhar motoru ve türbinlerinden oluşan kojenerasyon sistemlerine yakıt hücreleri, güneş pilleri, küçük hidro santraller ve rüzgar türbinlerini de ekleyerek yeni bir terim geliştirildi, 'Dağıtılmış Enerji Sistemleri (Distributed Energy Systems)'.

Şimdilerde tüm Dünya'da küçük ölçekli, micro-midi kojenerasyon sistemleri gibi bir
çok enerji üretim teknolojileri konusuna büyük önem verilerek bu konularda yapılacak yatırımlara büyük destekler verilmektedir.

Sonuç

Ülkemizde, genel olarak sanayide yaygınlaşan uygulamaları, önümüzdeki yıllarda, elektrik gücü üretimi yanında kışın isıtma, yazın soğutma yapılabilecek oteller, hastaneler, toplu yerleşim bölgeleri, apartmanlar, alışveriş merkezleri, yükseköğretim ve eğitim kampüsleri gibi çesitli sektörlerde de yaygınlaştırmamız gerekmektedir.

Böylelikle, bir yıl içersinde toplamı 50-100 saati pek geçmeyen elektrik kesintilerinde devreye giren acil durum jeneratörlerine, enterkonnekte sistemden oldukça fazla oranlarda elektrik gücü tüketen ve elektrik faturalarında sıkıntı yaratan konfor soğutması uğruna kullanılan klimalara, sıcak su üretmek uğruna müstakil olarak satın aldığımız kombi cihazlara gerek kalmadan, is1 ve elektrik gücü taleplerimizi, sitelerimizde, ofis binalarımızda, kampüslerimizde, otellerimizde, hastanelerde kojenerasyon ve tri-jenerasyon sistemleri kullanarak karşlayabilir enterkonnekte sistem fiyatının yaklaşık yarı fiyatına, kaliteli ve kesintisiz elektrik gücü yanısıra isı üretebiliriz. Böylece kojenerasyon teknolojisinin sunduğu yüksek verim ile hem kullanıcılar ekonomi sağlayacak hem de enerji kaynaklarında dışa bağımlı Ülkemizde kaynak tasarrufu sağlanacak ayrıca çevre kirliliği büyük oranlarda önlenebilecektir.

Kojenerasyon ve tri-jenerasyon sistemlerinin ülkemizde sanayi dışındaki uygulamalarının yaygınlaşması için aşağıdaki atılımları yapmak zorundayız.

- EPDK, site yönetimleri gibi kurumları muhatap kabul edip, onların lisans başvurularını kabul etmelidir.
- Bu tür tesislerin, şebeke ile paralel çalışmasına sıcak bakılmalı ve bu paralelliğin sağlanması için akılcı elektrik gücü şartları istenmelidir.
- Bu sistemler, yaz-kış doğal gaz tüketeceklerinden dolayı, onlar için ayrı ve indirimli bir doğal gaz tarifesi sağlanmalıdır.
- Bu sistemlerin hayata geçirilebilmesi için, finans kuruluşları uygun şartlarda ve makul teminat istekleri ile uzun dönemli kredi sağlamalıdır.

Eğer yukarıda belirtilen aşamaları gerçekleştirebilirsek, Ülke ekonomisinin en önemli
gider kalemlerinden olan 1sitma, soğutma ve elektrik enerjisi sektöründe yeni bir çağın açılmasına imkan vermiş oluruz.

Kaynakça

[1] Türkiye Kojenerasyon Dernegi 20042006 Faaliyet Raporu
[2] World Allience for Decentralized Energy (WADE) raporu COSPP Kasim-Aralik 2006.
[3] Resimli gösterimler Piramit Enerji ve HABO BV tarafindan hazırlanmış temsili şemalardır.

Gökmen TOPUZ

1972 İstanbul doğumlu, Maçka Teknik Lisesi Elektrik Bölümü, 1990, İstanbul
Teknik Üniversitesi Elektrik Mühendisliǧi Bölümü, 1995, Yedi Tepe Üniversitesi, İşletme Bilimleri Enstitüsü Yüksek Lisans Bölümünden 2000 yllinda mezun olmuştur.

1995'den 1997 yılı sonlarina kadar MAN Enerji Sistemleri Ltd. Şti'nde Gaz ve Dizel Motorları bölümünde proje yöneticisi olarak çalıştiktan sonra, meslek hayatına 1997-1999 yilları arasinda ENPA firmasında, güç santralleri satış ve uygulamasindan sorumlu müdür yardimcisi ve sonrasinda Wartsila NSDENPA A.Ş firmasında güç santralleri satış müdürü olarak görev yapmıştır. Kasim 2000 tarihinden 2005 Ekim tarihi arasinda Kale Holding şirketlerinden Kale Enerji'nin Genel Müdür yardımcllığl görevini sürdürmüştür. 2005 Ekim sonrasindan itibaren kurucu ortağı olduğu Piramit Enerji Üretim ve Ölçüm Sistemleri şirketinde Genel Müdür olarak iş hayatını sürdürmektedir. Temmuz 2006 tarihinden itibaren ise Piramit Enerji olarak sürdürülen 70 MW KıpTek Wartsila Elektrik Santrali Projesinin Proje Yönetim görevinin yöneticiliğini yapmaktadır.

Yayınlanmış ve konferanslarda sunulmuss enerji ve kojenerasyon konulu çeşitli çallısmaları bulunan TOPUZ aynı zamanda Dünya Enerji Konseyi, Türk Milli Komitesi, Türk Tesisat Mühendisleri Derneği, Doğal Gaz Sanayicileri ve İş Adamları Derneği ve Kojenerasyon Derneği Kurucu üyesi ve de Kojenerasyon Derneği 1998-2007 tarihleri arasinda Genel Sekreter Görevini sürdürmüştür.

Yeșil Binalar

Green Buildings

Abstract

Franco Anzioso; Luca Menardi;

\section*{ÖZET}

Son yıllarda, Avrupa Birliǧinin enerji sektöründe yaptığı çallşmalar, enerjinin "akıllı" kullanımın üzerinde yoğunlaşmıştır: Nitekim, son yönergeler, önemli ölçüde atmosfere salımları azaltmayı ve alternatif enerjilerin ve kojenerasyonun kullanımını desteklemeyi amaçlar. Günümüzde kojenerasyonun kullanımı, değeri kWh'a indirgeyecek şekilde büyük gruplar kurmanın mümkün olduğu sanayi çevresiyle sinırlıdır. Gerçek amaç, orta / küçük ölçekli sistemlerin kurulumunda ve yapıların yenilenebilir enerji kaynaklarıyla tümleşe- bilmesinde yatar

ABSTRACT

The studies that has been made by UN for the past few years related with the energy industries are focused on/concentrated on mostly the "intelligent" use of energy. As a matter of fact, the last policies/precept/rules of action support and aim to decrease the oscillation/beat to the atmosphere and also use alternative energy and cogeneration. Nowadays, the use of cogeneration is only available in manufacturing industries, where you can built large groups of systems and can use $k W h$ unit. The real purpose is to make medium/small systems and construct buildings that integrated with interconvertiblelrenewable energy resources.

Bu açıdan, Centro Ricerche Fiat (CRF), aşağıda açılanan çoklu beraber üretime yönelik, yüksek randımanlı birleşik enerji ve güç sistemini gerçekleştirmiştir:

- Elektrik enerjisi ve sıcak havayı eş zamanda üreten, melez güneş enerjili çatı,
- Beraber isı ve güç sistemi için içten yanmalı motor,
- Soğutma sistemi,
- Atık ısıyla nem alıcı bir sistem.

Bu düzenek, yıl boyu enerji kaynaklarının en akılcı bir şekilde kullanımına yardımcı olur Düşünülen enerji tasarrufunun, salınan CO_{2} miktarlarının $\% 20$ 'si ve ilk enerji koşullarında yaklaşık \%25'ine eşit olan simülasyonlar yapılmıştır. Yapıya, deneysel ürünleri gerçekleştirmek ve geliştirilen hesap modellerini geçerli kılmak amacıyla yaklaşık 200 hissedici takılmıştır. Söz konusu yeşil bina, Torino 'nun banliyösü olan Orbassano dadır (Italya adasının kuzey batısinda).

1. Giris

1.1. Il Centro Ricerche Fiat (Fiat Araştırma Merkezi), şirket yemekhanesinde yeşil bir yapının teknolojik uygulamasını gerçekleştirmiştir..
1.2. Binanın ayrıcalıklı amaçları, aşağıda belirtilen yöntemlerle doğal gaz ve güneş enerjisini eş zamanda ve verimli bir biçimde kullanan melez bir çevreci teknolojiler birlikteliğidir:

- Enerji tüketimineki gözle görülür bir azalma, CO_{2} salımının azalması ve benzer oranlarda enerji kullanımından doğan maliyet azalmaları ile yüksek kalitede elektrik gücü ve faydalı ısıyı eş zamanda özel ünitelerde üretmek,
- Havalandırma etkinliğini iyileştirmek için isı ve en yüksek gücü temin etmek için elektrik enerjisi kullanmak;
- Konut ve sanayi alanlarında gelecekteki uygulamalar için standardize edilecek ve pazarlanabilecek türde ileri düzey teknolojilerin gelişimi (yüksek verimliliği olan öğeler, entegre kontrol stratejileri ve servisin uzaktan işletimi) için başlangıç teşkil eden bir uygulama alanı gerçekleştirmek.

2. Düzek İşleyişinin Tanıtımı

Ekolojik yemekhane binası, iki kattan oluşmaktadır: ilk düşünülen bölüm hesaplamalar için ayrı bir şekilde tasarlanan restorant ve mutfak bölmelerinin bulunduğu ilk kattrr. Zemin kat ise yangın söndürücü garajı ve aynı yemekhanenin deposundan oluşmaktadır.

Burada kurulan sistemlerin görevleri enerji yönetimi, şebekeden elektrik enerjisinin alımı ve geleneksel kazan kullanımıla 1 sı üretimini öngörmektedir. Soğutucu enerji ise yapının diğer kullanımlarına yardımcı olan merkezi elektrikli soğutucu düzeneklerle üretilmektedir.

Bu yeni düzenek iki parçaya ayrılabilir:

- Tri-jenerasyon sistemi
- Melez güneş enerjili çatı

Tri-jenerasyon sistemi, soğuk hava üretim sistemini bağlayan bir kojeneratörden oluşur. Sistem üzerinde aşağıdakileri garanti edecek şekilde çalışılmıştır:

- Geleneksel düzeneklere göre CO_{2} salımını ve yıllık işletim maliyetinin azalmasıyla elektrik ve termik enerjinin entegre ve dağıtılmış üretimi;
- Soğutucu enerjinin entegre ve dağıtılmış üretimi;
- Mutfağın günlük yükünün bir kısmını karşılamak üzere elektrik enerjisinin kullanımı;
- Sistemin verimliliğini artırmak üzere termik enerji kullanımı;
- Servisin sürekliliği. Bu amaçla bu yeni cihaz, herhangi bir şekilde başka bir cihaza dönüşümünün basit ve hızlı olmasiyla mevcut cihazın (paralel olarak çalışması) dönüşümü şeklinde olarak algılanmıştır.

Şekil 1. Melez güneş enerjili çatı görüntüsü

Şekil 2. "Ekolojik-yemekhane" nin fonksiyonel şeması

Şekil 3. Restoran, mutfak, misafir salonlarınnn iç görünümü

Şekil 1'de çatıdaki fotovoltaik panellerin şekli fark edilebilir. Bu konfigürasyon, çatının örtüsünden belli bir mesafede onu koruyan metalik özel bir yapı üzerine sabitlenmiş fotovoltaik bir panelden oluşmaktadır.

Bu boşluğun içinden, çift etkili hava akımı geçer: yüzeysel sıcaklığı azaltırken ve aynı zamanda sistemin verimliliğini artırarak kullanıla bilinen bir akış üreterek, havayı ısıtan aynı panelin verimliliğini artırır. Bu teknoloji böylelikle, güneş radyasyonunun en yoğun olduğu saatlerle söz konusu tepe noktaların uyuşur olduğu uygulamada güneş aracıllğıyla elektrik ve termik enerjisi üreterek aşırı yükü temin etmeye yardımcı olur. Yukarıdaki son yatay sıra (Şekil l'de booster (güçlendirici) olarak adlandırılmış olan), fonksiyonu havanın sıcaklığını sonuna kadar yükseltme işlevi olan termik panellerden oluşmaktadır.

Şekil 2'de ise aynı düzeneği oluşturan makro sistemleri görmenin mümkün olduğu "ekolojik yemekhane"nin fonksiyonel şeması betimlenmiştir:

- Elektrik enerjisi üretim sistemi: kojeneratör ve melez güneş enerjili çatı;
- Termik enerji üretim sistemi: kojeneratör ve melez güneş enerjili çatı;
- Soğutucu enerji üretim sistemi: soğutucu cihaz;
- Sıhhi kullanım amacıyla sıcak su birikim sistemi: isiticl.

3. Hesaplama Modelinin Açıklanması 3.1. Önsöz

Mevcut çeşitli teknolojileri analiz etmeden önce, yemekhanenin enerji ihtiyaçlarının hesaplamak üzere bir dizi işlem gereklidir: bu değerlendirmede, her ayın her günün ihtiyaç saatlerine ilişkin ısıyı ve isıtma / havalandırma cihazının büyüklüğünü ölçümlemek için kullanılacak yazlık ve kışlık uç noktadaki güçleri hesaplamaya yarayana spesifik SW (HVAC CAD 2002) kullanılmıştır.

Simülasyon için gerekli olan giriş verileri aşağıdaki gibidir:

- Yapının AutoCad tasarımı (makro alana
ayrılmış);
- Yapının inşai materyalleri;
- Saat çizelgesiyle açıklanan sınırlama;
- Emilen elektrik gücünün ve gelişen hissedilebilir ısı koşullarında saat çizelgesiyle açıklanan ışıklandırma verileri;
- Emilen elektrik gücünün ve gelişen hissedilebilir 1 sı koşullarında saat çizelgesiyle açıklanana ekipman parçalarına ilişkin veriler;
- Saat çizelgesiyle açıklanan ve cihazın maksimum potansiyelinin kullanım oranı olarak cihazın başlangıç programı;

Bu verilerden başka aşağıdakiler gibi bazı parametreleri de açıklamak gerekmektedir:

- Sabit coğrafik konumlandırılması,
- Sıcaklık ve bağıl nem koşullarında kış ve yaz dönemindeki set-point koşulları.

Şekil 3'de, çalışma planının kısımlara ayrılmış olduğunu görmek mümkündür: Restorant alanı (1), mutfaktaki pişirme alanı (2), koridorlar ve soğutucu bölge (3) misafir salonları (4), merdiven boşluğu (5).

Termik işletimin yazılımından elde edilen sonuçlardan yola çıkarak, teknik açıdan trijenerasyon cihazını değerlendirecek ve çevredeki avantajların (geleneksel duruma göre daha az emilen karbondioksitin kilogram olarak ifade edildiği) ve uygulamadaki tasarruf koşullarında teknolojiler arasındaki ekonomik karşılaştırma, analizine yardımcı olacak şekilde bir hesap işlemi gerçekleşmiştir.

Bu model, ayın bütün günlerinin değerlerinin eşit olduğu farz edilerek her ayın her türden ilişkin verisini değerlendirerek, alan analizine yardımcı olur. METEONORM iklimsel verilerinin yazılımı kullanılarak sıcaklık, bağıl nem ve bir yılı oluşturan 8760 saatlik güneşlenme verilerini değerlendirmek mümkündür; her ay için, hesap modelinde kullanılacak olan bu değerlerin ortalaması alınır. Nitekim bu yazılım, çeşitli parametrelerin (sıcaklık, nem, aşırı sıcaklık, rüzgarın hızı, ...) istatistik işlemlerin yapılmasıyla elde edilen yıllık ilişkin verileri sağlar.

İstatistikî olarak düşünülen zamansal dönem parametrelerine bağlı olarak, 30 ile 50 yıl arasında değişmektedir: bu yüzden saat değerlerinin, kontrol stratejilerinin gelişimi için göz önüne alınabileceği ancak cihazın fizibilite çalışmasını yapmak için çok önemli olmadığı sonucu ortaya çıkar. Bu durumda aylık ortalama daha çok önem kazanır. Hususların açıklanmasıyla higrometrik bir kontrolü öngörmeyen, sadece bölgelerin termik kontrolünün öngörüldüğü yemekhanenin havalandırmasına / isıtılmasına ilişkin bu cihazın çalışma şekli analiz edilmiştir. Yeni cihazın, çevredeki optimum termohigrometrik koşulları garanti etmek için havadan nem alımı da eklenerek bölgelerdeki nemin kontrolünü de yapması, fonksiyonları arasında yer almasını sağlamıştır.

Bu işlem, silikon jeliyle termodinamik çarkı kullanarak ya da soğutucu bataryalar üzerindeki havanın nemliliğinin yoğunlaşması aracılığıyla yürrütülebilir.
4. Düzeneğin fonksiyonla ilgili açıklamasında yapılan taksimden yola çıkarak, düşünülen teknolojiler aşağıdaki gibidir:

- Kojeneratör: elektrik enerjisi ve termik enerji üretimi için (sıcak su),
- Melez günej enerjili çatı: elektrik enerjisi ve termik enerji üretimi için (sıcak su),
- Absorbsiyon devresi: soğutucu enerji üretimi için (soğuk su),
- Isı pompası: termik enerji (sıcak su) ve soğutucu enerji (soğuk su) üretimi için,
- Termodinamik çark: havadan nem alımı için,
4.1. Hazırlanan hesaplama yöntemi, ekipman parçalarının, tri-jenerasyon cihazındaki gerekli yardımcı parçaların ilk planlamasını ve fizibilite çalışmasını yapmaya yardımeı olur. Tek parçadan oluşan öğelerin enerji akışlarını değerlendirmek için, düzenek dört alt gruba ayrılan bir sisteme ayrılmıştır:
- Kojeneratör,
- Soğutucu güç üretim cihazı,
- Mutfak bölgesindeki havanın sağaltım ünitesi,
- Restorant bölgesindeki havanın sağaltım ünitesi,

Iklim verileri

diş sicaklik sicaklik toplamı	Ocak	Subat	Mart	Nisan	Mayis	Haziran	Temmuz
	-4	-2.4	2.4	7.5	10.4	3.5	-2.2
	1	2	8	13	13	6	2
dış sıcaklık diş bağıl nem sıcaklik toplamı	Haziran	Temmuz	Ağustos	Eylül			
	26.4	30.5	29.6	26.1			
	55	55	55	60			
	38	43	42	37			

Binadaki Dağılımlar

restorant mutfak	Ocak	Subat	Mart	Nisan	Mayis	Haziran	Temmuz
	71	66	55	42	32	52	66
	17	15	13	9	7	11	15
restorant mutfak	Haziran	Temmuz	Ağustos	Eylül			
	122	133	129	120			
	24	27	26	24			

Şekil 4. Model için giriş verileri
En az iki farklı teknolojinin çalışılmasını ve test edilmesini sağlamak için, geleneksel sistemlerle restorantdaki (soğutucu bataryalar üzerindeki suyun yoğunlaşması) ve termodinamik çarkla mutfaktaki nemi düşürmeye karar verilmiştir. Bu seçim, yıllık kullanım saatinin çok fazla olması ve sürekli çalışmasını garanti ederek, restoranta göre mutfağın daha fazla saat çalışmasından kaynaklanmıştır.

Havada çok düşük miktarda neme sahip olma gerekliliğinin olduğu bütün alanlarda çarkın kullanımı, konsolide olmasına rağmen (buzhane, steril kabinler, sanayi alanları....), bireysel havalandırma uygulamalarında çok yenilikçi bir özelliği ortaya çıkarır. Bu teknoloji, adyabatik nemlendiricinin devreye girmesi sayesinde, hava akışındaki nem standardını kontrol etmeye ve nemlendirme için enerji tüketimini indirgemeye yardımcı olur. Nitekim bu işlem ekzotermiktir ancak havada elde edilen hissedilebilir 1sı, çıkan sınır isısından aşağıdadır: enerji bilânçosu bu yüzden olumlu sonuçlanır. Bu uygulamanın kullanım avantajı, çarkın yenilenmesiyle ısı kaynağı gerektirmektedir: bu durumda kojeneratörün ürettiği isı tetkik edilmektedir.

4.2. Modelin Şekli

Önceden de belirtildiği üzere, bu hesaplama yönteminin kullanılması için sistemi detaylı bir şekilde açıklamak ve özellikle aşağıdaki verileri temin etmek gerekir :

- Cihazın dizayn verileri: hava menzili, set-point sıcaklığ1,
- Tüketim verileri: havalandırma ve yardımcı özellikler için elektrik enerjisi,
- Konvansiyonel sistemlere ilişkin veriler,
- kojeneratör ve soğutucu cihaz verileri,
- Ekonomik veriler,
- İklimsel veriler,
- Yapıdaki dağılımlar.

İklimsel değerlere baktığımızda ise, sıcaklığın ve yaz dönemindeki nemin (havalandırma üzerindeki hesaplamalar için gereklidir) aylık ortalama değerlerini kullanımı karalaştırılmıştır. Melez güneş enerjili çatıdan çıkan havanın ortalama sıcaklığının açıklanması için, deneysel ölçümün çatının son raddesine kurulan meteorolojik istasyonla yapılan dış iklimsel verilerle (sıcaklık, bağıl nem, rüzgarın hızı ve yönü, ssı dağılımı) bu sıcaklığı ölçecek seviyede termodinamik bir model kullanılır.

Yapıdaki dağılımların değerleri önceden de belirtilen özel yazılımla değerlendirilir: şekil 4'de simülasyon barı yapmak için kullanılan yapının dağılımlarının ve iklimsel değişikliklerin değerlerini görmek mümkündür. Bu yüzden bu model ana üç temel parçaya ayrılır:

- Birinci bölümde elektrik enerjisi (aydınlatma, havalandırma, ekipman parçaları) ve termik enerji (yapının dağılımı, yenilikler) limitlerinde yapının bütün koşulları açıklanır. Esasen
yaz ve kış dönemini hesaba katan ikincil farklara sahip iki hesap yöntemi vardır: çünkü, yaz döneminde soğutucu güç ihtiyacı üzerinde oldukça etki yapan hava değişiminden ortaya çıkan sınır ısısının katkısını da göz önüne almalıdır. Kış döneminde ise bu süre daha azdır çünkü havanın çok daha düşük nemi vardır: set-point koşullarının muhafazası için aksine havadan nem alımı gereklidir.
- İkinci bölümde cihazı oluşturan tek parçalara ilişkin hesaplamalar yapılır: 1s1 eşanjörleri, termodinamik çark, termik birikim.
- Üçüncü bölümde, tasarruf edilen ilk enerji limitlerindeki bütün sistemin enerjisinin korunumu, öngörülen yeni enerji tüketimini varsayan hesaplamalar gerçekleşir (elektrik, termik ve soğutma enerjisi). Karbondioksit salımlarındaki azalmanın ve işletim maliyetlerindeki tasarrufun değerlendirmesi için ayrıca ekonomikçevresel hesaplamalar da yapılır.

4.3. Verilerin analizi

Soğutucu cihaz seçiminde, absorbsiyon devresinin ve termodinamik çarkın bugünkü kullanımı uygulanamaz olduğu, her iki teknolojinin de girişteki isı kaynağına ihtiyaç duyduğu düşünülerek karşılaştırmalı bir analiz yapılır.

Farklı iki yapılandırma analiz edilir:
a) Kojeneratör, termodinamik çark, 1 s 1 pompası
b) Kojeneratör, absorbsiyon devresi

Simülasyonu gerçekleştirmek için yapılan hipotezler aşağıdaki gibi özetlenebilir:

- Mutfaktaki elektrik tüketimi gün boyunca absorbe edilen ortalama gücün, kurulan gücün yarısına eşit olduğu düşünülerek değerlendirilir: 200 kW 'a eşittir; bu değer alanda gerçekleştirilen deneysel ölçümlerle doğrulanmıştır (Şekil 5).
- Restoranının elektrik tüketimi, 1 sıtma kabına ilişkin payı dikkate almaksızın sadece 1şık imisyonu düşünülerek değerlendirilir (değerlendirme için veriler hazırlanmaksızın): 20 kW 'a eşittir;
- 160'a varan aylık çalışma saati;
- SW METEONORM'dan çıkarılan değerlerin aylık ortalamasına eşit meteorolojik veriler.

Bu ilk bölümde elde edilen sonuçlar analiz edilerek, daha uygun bir kojeneratör kesimi tercih ederek, ihtiyaçların mevsimlik gidişatını değerlendirmek mümkündür. Şekil 6'da kış dönemi için sonuçlar gösterilmektedir: gök mavisi (açık) rengindeki

Şekil 5. Mutfaktan emilen elektrik gücünün gidişatı

Sekil 6. Kļ̧ döneminde ihtiyaçların gidişatı

Şekil 7. Yaz döneminde ihtiyaçların varyasyonu
histogramlar, havanın sadece yenilenmesinin istendiği durumda yemekhanenin toplam ihtiyacını gösterir, oysa ki mavi (koyu) histogramlar ise yapıdaki dağılımları da hesaba katarak ihtiyaçları ifade eder.

Düzeneğin tam işlevselliğini garanti edecek şekilde testi gerçekleştirebilmek için, mevcut cihaza göre paralel olarak çalışacak ve bütün havayı işleyecek yeni cihazın ölçümlenmesine karar verilmiştir. Bu düşünceden yola çıkarak bu yüzden mavi (koyu) histogramların
değerlerini düşünmek gereklidir. Monitörün faaliyeti devamlıdır: bu olanak, ortamın konforunu devam ettirerek (mahaldeki insanlarla) ve düzeneğin sadece bazı bölümlerini test etmek üzere özel koşullar yaratarak (mahalde insanlar ve konfor seviyesindeki bağıntılar olmaksızın) standart çalışması esnasında düzeneğin çeşitli parçalarını tahkik etmeyi ve tavsif etmeyi sağlar.

Şekil 7'de ise yaz dönemindeki ihtiyaçların gidişatı görülür. Mayıs ayı, iklimsel verilerin analizinde, saatlerin büyük bir bölümünde düzeneğin kapalı kaldığı yada free-colling (taze hava soğutucusu)'le çalıştığı sonucunu gösteren simülasyonlarda hesaba katılmaz.

Kojeneratör seçiminde, is1 pompası ya da absorbsiyon devresinin kullanılmasını istenmesine bağlı olarak bazı fikirler üretmek gerekir:

- Isı pompası durumunda, kış dönemindeki ihtiyacın kojeneratörden ve isı pompasından karşılanabileceği ihtimali göz önüne alınmalıdır;
- Absorbsiyon devresi durumunda, kış dönemindeki ihtiyaç, tamamen kojeneratöre bağlıdır.

Yaz dönemindeki gibi kış döneminde de ihtiyaçları azaltmak için, örneğin taze hava ile bölgelerden çıkan hava arasındaki değişim, soğutucu kulelerden çıkan süreçteki suyla ısının değişimi gibi enerjiyi koruyacak seviyedeki sistemler üzerinde çalışılmıştır; Şekil 8 ve 9 'da görüldüğü üzere, tüketimin düşüşü hissedilebilirdir (\% 30'a eşit).

Soğutucu cihazın ölçümü için, kış için ocak ayının son günü düşünülürken, Temmuz ayının son günü da hesaba katılır.

Yaz dönemi için yaklaşık 220 kW üreten bir soğutucu cihaz gerekliyken, kış dönemi için yaklaşık 200 kW 'lık bir cihazın gerekli olduğu açıkça ortaya çıkar. Toplam bilanço için, yaz döneminde termodinamik çarkın yenilenmesi için ısı elde edilmesi gerekli olduğu kadar termik enerjinin emiliminin ortaya çıktığı hesaba katılmalıdır ve bizden bu istenmezse, sıhhi kullanım için suyun 1sitılması öngörülür. Mevcut cihaz üzerinde yapılan hesaplara dayanarak, bu son

Şekil 8. Iç dönüşümlerle klşllk ihtiyaçların

Şekil 9. İç dönüşümlerle yazlık ihtiyaçaların seyri

		Kış döneminde toplam	Yaz döneminde toplam	Toplam
Ekolojik tasarruf	Eski düzenekteki salınım (kg)	214818	124649	339467
	Yeni düzenekteki salınım(kg)	170231	123780	294010
	Tasarruf(kg)	-44587	-869	-45456
	Yüzdelik ifadeyle tasarruf	-20.76\%	-0.70\%	-13.39\%
Ilk enerji tasarrufu	Eski düzenekteki sıcaklık	92.04	52.04	144.09
	Yeni düzenekteki sıcaklık	71.95	50.55	122.51
	Tasarruf edilen sıcaklık	-20.09	-1.49	-21.51
	Yüzdelik ifadeyle tasarruf	-21.8\%	-2.9\%	-15.0\%

Şekil 10. Simulasyon sonuçları
kullanım için günde bir kaç saatte ve diğerlerinin yaklaşık yarısıyla 130 kW 'a eşit enerji emilimi ortaya çıkar.

Havadan nem alım sistemi analiz edilerek, çark seçimi için kritik parametre, rejenerasyon 1sısının termik seviyesidir. Normalde bu 120-130 C 'de bir isıda üretilir; bu değerler yaklaşık 5 barlık bir basınç ve aşırı 1sıtılmış suyun kullanımını gerektirir. Bu koşullar özel korumayı icap eder ve daha ciddi bir mevzuatı arz eder; bu yüzden su eriyiği ve konsantrasyonlu glikolle 90-100 C'den aşağı sıcaklıkta çalışması tercih edilir.

İkinci sirkülasyondaki suyun sıcaklığına ilişkin bu sınırı koyarak (şekil 14'e bakınız) elde edilebilir olan rejenerasyon için havanının maksimum sıcaklığ $185-90^{\circ} \mathrm{C}$ 'ye eşittir. Bu sıcaklık seviyeleriyle ve bu uygulamalar için gerekli eşanjörlerin genel etkinlik değerleriyle uygunluk gösteren gerekli güç yaklaşık, $110-120 \mathrm{~kW}$ olarak sonuç vermelidir.

Böylelikle gerekli gücü üretmek için elektrik 1sısı pompası kullanıldığını varsayarak ve 3 birime eşit COP düşünerek 73 kW 'lık elektrik emilimi ortaya çıkar: bu gücü üretecek seviyedeki bir kojeneratörle, 150 kW 'lık termik üretim ortaya çıkar. Bu değer, düzeneğin ihtiyaçlarıyla uygun olarak görünmektedir ancak piyasada mevcut olan kojeneratörlerin fiyatı ve kesimi baz alınarak 105/110 kW'lık termik güç üretimi olan elektrik gücünün nominal 50 kW 'lık bir motoru üzerinde nükseder.

Bu düşüncelere dayanarak 1 s1 pompas1 aşağıdaki özelliklere göre seçilir:

- Nominal soğutucu enerji: 220 kW ;
- Yaz dönemindeki maksimumum elektrik absorbsiyonu: 73 kW ;
- Nominal termik enerji: 309 kW ;
- Kış dönemindeki maksimum elektrik absorbsiyonu: 58 kW .

Yaz dönemindeki gücü karşılamak için absorbsiyon devresi kullanarak ve 0.7'ye eşit bir ortalama randımanı düşünerek, termodinamik çarkla havadan nemin alımı için gerekli olan 110 kW da eklenerek, 315 kW termik enerji üretecek güçte bir motor gereklidir; böylelikle toplam yaklaşık 210 kW elektrik enerjisi üretimi sağlayacaktır. Bu tür bir sistem kış döneminde fazla gelir ve absorbsiyon makinesi sadece yaz döneminde kullanılacaktır. Bu düşüncelerle özellikle uygulamada absorbsiyon devresine göre 1 isı pompasının kullanımının daha uygun olduğu açıkça görülür.

Özel uygulama için gerçekleştirilen simülasyonların sonuçları, soğutma elde etmek için absorbsiyon devresini kullanarak

Şekil 11. Yaz koşullarında düzeneğin çallşma şeması

Şekil 12. Klş koşullarında düzeneğin çalışma şeması

Şekil 13. "Desiccant cooling" (kurutucu) sistemin çallşma şeması
karbondioksit salımlarında (+ \% 48) ve sonuç olarak ilk enerjinin tüketiminde (+ \% 30) artış gösterdiğini ortaya çıkarmıştır. Şekil 10'da seçilen düzeneğin konfigürasyonundaki sonuçların detayı verilmiştir: kojeneratör, melez güneş enerjili çatı ve isı pompası. Görüldüğü üzere bu yeni konfigürasyon önceki çözüme göre 21,59'luk (1si/yil) tasarruf sağlar. Ayrıca ekolojik açıdan da \% 13,4'lük (45,5 ton/yıl) karbondioksit salımını azaltan bir iyileşme görülmüştür.

5. Düzeneğin Açıklanması

Bir sonraki adım, düzeneğin tertibinin açıklanması aşamasıdır; sadece iki bölümden oluşmaktadır, yaz dönemindeki çalışma sistemi (Şekil 11'e bakınız) ve kış döneminde çalışma sistemi (Şekil 12'ye bakınız).

Mutfak bölgesinin hava sağaltımı ünitesinin şemasını da burada görmek mümkündür: melez güneş enerjili çatıdan çıkan hava, termodinamik çarkın yenilenmesi kısmına gelmeden önce kojeneratörün (şekil 14'e bakınız) ikinci çevriminden çıkan sıcak havayla beslenen bir bataryada (1) 1sitılur. İlk hava nemlendirilir: bu işlem isiticı gerektirir ve iş bu halde, kule suyuyla(2), adyabatik nem alımını (nem alımının fazlasıyla yapılması için gerekli işlem) gerçekleştiren ilk soğutma ve muhtemelen is1 pompasıyla üretilen soğuk suyla gerçekleştirilen sonraki soğutma süreci gereklidir.

Restorantın hava sağaltımı ünitesine baktığımızda, bu geleneksel türdendir yani nem alımı, havayı isitarak ve akabinde isitma sonrasında gerçekleşir (Şekil 17'de havanın geçirdiği süreç görülebilir). Özellikle ilginç olan da, iç dönüşüm sistemini kullanımıdır (Şekil 15 'e bakınız, 1 ve 2 numaralı eşanjör); test edilmesine, simülasyonlardan alınan sonuçlarla karar verilmiştir.

Yoğunlaşmanın gerçekleştirilmesi için gerekli olan soğutucu güç, sınır 1sisı ve duyarlı limitle oluşmuştur: duyarlı limite nem sıcaklığına kadar havanın sıcaklığının azaltılması için çıkacak isı da dâhildir oysaki sınır ısısı ise, yoğunlaşan suyun miktarıyla artan yoğunlaşmanın sınır ısısına karşılık gelir. Havanın geçirdiği bu süreç Şekil 16'da Mollier diyagramında görülebilir: 3-5 bölgesi çıkacak duyarlı ısıyı temsil eder, 5-4 bölgesi çıkacak sınır ısısını temsil eder ve 4-1 bölgesi de elde edilecek isitma sonrasinın duyarlı isısinı temsil eder. 1 ve 2 noktalarından geçen çizgi, duyarlı 1 sı ile toplam isı (termik faktör) arasındaki ilişkinin ve set-point'in iç koşullarının çalışması, çalışma çizgisidir. Enerji açısından 3-5 ve 4-1 bölgeleri, önce havayı soğutma ve sonra isitma ardından cihazın enerji veriminin kötüleştiğini gösterir: bu sanı, havayı sonraki isıtma için 3-5 bölgesinde çıkacak ısının kullanımıdır (bölge 4-1). Bu durumda eşanjör bataryaları ölçülerek, isı pompasının duyarlı ısıyı çıkarmak için soğutucu enerjinin "kaybı" olmaksızın sadece sınır isısıyla yükleye-
bileceği şekilde bataryaya girmeden (3) önceki doyma koşullarındaki havayı taşımak mümkündür. Aynı zamanda isıtma sonrası için enerji tüketmez: uygun bir şekilde araştrıılan ve test edilen bu sistem, oldukça fazla enerji tasarrufu sağlayabilir ve aynı zamanda isıtma sonrası için bir kaynak hazırlamayan yada çok düşük randımanlı elektrik yoluyla gerçekleştirilmesi gereken durumlarda da nemin kullanımını garanti edebilir.

6. Sonuçlar

Bu cihaz, genel enerji verimliliğinin iyileştirilmesini amaçlayan termik dönüşümün yenilenebilir kaynakları olan mikro kojenerasyon ve pasif sistemlere dayanan öncü teknolojik solüsyonların test edilmesiyle gelişen bir laboratuar gibi kurulur.

Bugün test safhasında olan ekolojik bir binada, şirket yemekhanesinin iyileştirilmesi, aşağıdaki yararları sağlayacaktır:

- Tri-jenerasyon sistemi kullanılarak iç hava kalitesini iyileştirmek;
- Pik enerji sırasında güneş ışımasının çok yoğun olduğu saatlerle uyuştuğu bir uygulamayla, "melez güneş enerjili çatı aracılığıyla güneşle eş-zamanda (kendi başına bir kojenerasyon) elektrik gücü ve faydalı 1 ss üreterek, pik yüklerin karşılanmasına bulunmasi;
- Yeni sistemlerin bakımı yada arızası, söz konusu yemekhanedeki emniyet görevini kapsayan servis sürekliliğini garanti etmesi. Bu amaçla yeni cihazlar, en son değişikliklerle (dönüşüm) hazırlanır.

Kaynakça

[1] ASHRAE Handbook, "Fundamentals", SI Edition 1997.

Yazarlar;

Franco Anzioso;

1972 yılında Torino da doğmuştur. Elektrik Mühendisi Derecesini 2000 yılında, Elektrik Doktorasını da2004 yılında almıştır 200 yılından beri Fiat Araştırma Merkezi CRF de araştırmacı olarak görev yapmaktadır. Ana ilgi alanlart, dağıttk enerji üniteleri için güç üretimi, şebeke bağlantıları ve ürün geliştirmedir. Halen CRF de proje Yönetmenidir.

Luca Menardi;

1974 yılında Cuneo da doğmuştur. Kimya Mühendisi derecesini 2000 yılında almıştır. 20002004 yilları arasında CRF de Beraber Üretim Sistemleri alanında araştırmacı olarak çalışmıştır. Ana ilgi alanları dă̆ıııık enerji üniteleri için güç üretimi, şebeke bağlantıları ve ürün geliştirmedir. Halen üye olduğu isıl ve yenilenebilir enerji tasarımı alanında faaliyet gösteren bir mühendislik derneğinde çalışmalarına devam etmektedır.

Şekil 14. Motor devresinin ayrıntllı planı

Şekil 15. UTA restoran Şeması

Şekil 16. Havalandırma süreci; yaz ayında

Isıtma ve Güç Merkezi

Heating and Power Stations

Juan M. Ontiveros, P. E;
Austin Carl J. Eckhardt'deki-Teksas Üniversitesi Birleşik 1 sı ve Güç tesisi Utilities and Energy Management Department (UEM) tarafindan işletilmekte ve başından beri son derece güvenilir elektrik ve 1 sı sağlamaktadır. Üniversite son 9 yil boyunca yillik verimini dereceli olarak artırmıştır. Bu, yıllık 1 sı ortalama miktarını $9800 \mathrm{Btu} / \mathrm{kWh}$ 'den 12 $700 \mathrm{Btu} / \mathrm{kWh}$ 'e bir iyileşme ve verimde yaklaşık \% 12 lik bir gelişme anlamına gelmekte, yada toplam birikmiş tasarrufların 1999~2006 arasında12.3 milyon MMBtu 'ya veya 3.3 milyon dolar'a ulaşması demektir. Bazı temel bilgiler aşağıdaki gibidir:

Üniversiteye UEM Departmanlarından sağlanan Hizmetler şunlardır:
Kampus alanının yaklaşık $\% 80^{\prime} \mathrm{i}$ araştırma amaçlı olduğundan güvenirlik çok önemli fakat maliyet etkinliği ve çevresel etkiler yönünden dengelenmesi gerekmektedir. Güvenirlik, elektrik, buhar ve soğutulmuş su üretimine kadar geniş ve son derece birbirine bağlı sistemlerin bir ürünüdür. Satın alınmış hizmetler (elektrik, su,buhar vb) desteği olmadığı için, bu hizmetler yönünden kampus \% 100 oranında kendisine yeterlidir.

Minerallerden arındırılmıs olan su (demineralize) kazan besleme suyu sisteminden elde edilen bir yan ürün olarak araştırma tesislerine verilmektedir. Demineralize ve geri-kazanılan su, ile basınçlı hava tünel sistemi ile dağtılımaktadır. Kampus, ylda 900 milyon galon (1 Gal (US=3.795 L) su tüketmektedir. Bu toplamın 500 milyon galonu tesis çalışmaları için olup, 50 milyon galonu akığ-geçen soğutma suyu, yer altı suyu, yağmur suyu sistemleri, boşaltılan yüzme havuzu suyu, binadaki soğutma serpantinlerinden yoğuşum suyu olarak geri-kazanılmaktadır. Geri kazanulan bu su, PVC boru sistemi ile tekrar devreye sokulmakta ve tesislerdeki soğutma kulelerine döndürülerek, şebeke suyu gibi kullanılmaktadı.

Şekil 14. Motor devresinin ayrintllı planı
Güvenirlik felsefesi, elektrik, buhar ve soğu-tulmuş su üretiminden dağıtım sistemlerine kadar genişletilmiştir. Aşağıdaki grafik çalışma felsefisini göstermektedir. Güvenirlik ve maliyet etkinliği arasındaki denge kurulmalidır. Yedeğe fazlaca yöneltmek verimi olumsuz etkiler. Yeterli olmayan yedekleme ise güvenirliği olumsuz etkiler. Satın alınan hizmetler kampusta üretilenlere oranla daha aza güvenilir olduğundan, 25 MW'lık bir yedekleme anlaşması söz konusudur ve bu yedek sadece tesislerin karmaşık bir döneme girmesinde yada programlı kesintiler sırasında kullanılmak üzere kampusta üretilen elektriğe paralel bağlanmıştur.

Güç, buhar ve soğutulmuş su üretimi ve yardımcı sistemler için yeterli yedek devreye sokulursa da, kontrollerin de aynı zamanda devrede olmalıdır. Tesiste beklenmeyen bir durum ortaya çıktığında yeteri kadar yedek ekipman kullanılabilir durumda olmalı ve kontroller çalıştrıcının en az müdahalesini gerektirecek biçimde hızla yanıt vermeli ve potansiyel arıza durumunda bu durumu gidermek üzere kritik ekipmanlara ait bol miktarda işlemci bulundurulmalidır.

Aşağıdaki kampus tesis sistemi için basit bir şemayı göstermektedir. Bu şema gelecek dört yıl içerisinde yapılacak ve elektrik üretme kapasitesini, yeni bir 15000 ton'luk chiller tesisi ile kampusun genişlemesini karşlayacak olan chillerler, 5000000 galon'luk isıl depolama sistemi gibi projeleri de göstermektedir. Bu projeler $\$ 8 / \mathrm{MMBtu}$ gibi bir doğal gaz maliyeti ile hemen hemen yılda 6000000 USD'lik bir tasarruf sağlayacaktır. Aşağıdaki fotoğraflar sisteme ait yanma ve buhar türbinlerine aittir. Isı geri kazanımı buhar üreteçleri (HRSG) ve kazan dairesi 420 psi ve $700 \mathrm{~F}^{\prime}$ da buhar üreten bir sistemin bir bölümüdür. Eğer gaz türbini ve/veya HRSG arızalanırsa, elektrik sistemine yedek güç (25 MW) desteklemekte kullanılır ve buhar dağıtımını desteklemek için dört buhar kazanından biri yada daha fazlası destek olarak kullanılarak buhar türbinleri aracılığı ile elektrik sisteminin büyük bir bölümünü

devrede tutar. Tesis ekipmanlarının bu biçimde birbirine bağlanması bizim tesis çalışmalarımızı karmaşık hale getiren bir sorun olması yanında bir bakıma iyi bir şeydir de; böylece Allen Bradley kontrol sisteminin önemi, güç tesisi ve soğutulmuş su sitemi ile bütünleşmiştir.

Sağlanan ekonominin önemli bir bölümü, 40800 ton toplam soğutmanın dışında buhar türbin tahrikli chillerler yoluyla 10800 ton soğutma üretilebilmesinden kaynaklanır. Soğutma yükünün (28 000 Yon pik) ve 120 MW'ın dışında elektriksel yükün(60 MW pik) en yüksek olduğu yaz aylarında, HRSG'nin ürettiği buhar soğutulmuş su sistemini destekler. Elektrik ve chiller suyu desteği üretimine ek olarak, bizim 170 binalı kampustaki isitma ve sıcak su sitemleri de buhar sistemleri tarafından desteklenir.

40,800-ton'luk chiller tesisi, içinde yürünebilir bir tünel sistemi yoluyla bir tek soğutulmuş-su devresi tarafından beslenen dört chiller istasyonundan oluşur. Bu ; dört soğutma istasyonundan bir yada fazlasının soğutmada olduğu kadar kampusü hidrolik olarak da besleyebildiği için son derecede güvenilir bir sistem ortaya koymaktadır. Hidrolik olarak, her bir soğutma istasyonu, istasyonun tüm GPM (debi)'sini karşılayacak biçimde boyutlandırılır basınç artırıcı pompalar (booster pompalar) bina gereksinimlerini karşılamak üzere binalara yerleştirilir.

Hemen bütün kampus elektrik dağıtım tesisleri trafolardan biri arızalandığında diğerinin \% 100 bina yükünü karşılayabilmesi için çift-uçlu alt-istasyonlar biçiminde tasarlanmışttr. Hemen bütün tesisler de biri arızalandığında hızla ikinciyi devreye almak üzere soğutulmuş su, buhar ve içme suyu sistemlerinden iki besleme hattına sahiptir Bir bilezik bus uyarlamasıyla yeni alt-istasyon $4 \times 50 \mathrm{MVA}$ 'lık trafolar içerir ve iki yıl önce tamamlanmıştır ve bus'lardan birisi arıza yaptığında diğer bus'lardan besleme seçeneği vermek üzere birinden diğerine kaydırılabilir biçimde tasarlanmıştır.

Bu güne kadar bu otomasyon döneminde güç ve soğuk su santralleri için yaklaşık $\$ 9,000,000$ yatırım yapılmış olup; bu bedel bir gerçek zamanlı besleme sistemi, bir buhar bypass sistemi ve diğer sistemleri kapsamaktadır; ayrıca yeni bir alt-istasyon tesisi elektrik kontrol sistemi (switchgear), yeni bir soğutma kulesi ve 25 MW'lık yeni bir buhar türbini için harcanan $\$ 45$ milyon USD 18 yıllık geri ödeme süresine sahiptir.

PLC temelli sistem, daha önce kazanlar brülör yönetim sistemi olmaksızın ve tesis elle, çalıştırıldığından güvenirliği şaşırtıcı biçimde artırmıştır. Kazanların devre dışı kalması ve sistemlerdeki olumsuzluk olağan durumlardan olduğundan, kampus hizmetleri önemli ölçüde etkilenmese de, bu durumlar ciddi işletme güçlükleri yaratmaktaydı. Bugün artık elektrik santralleri ve chiller sistemlerini, ortak kontrol sistemi nedeniyle birleştirme olanağına da kavuşmuş durumdayız. İşletme maliyetlerinin sürece-ğini ve güç ve soğutma suyu istasyonlarında benzer sistemler için gelişkin eğitim vere-bilmeyi umuyoruz.

Bu yatırımlar, tesislerin işletimini saf bir birleşik çevrim konumunun ötesine götürmeye yardım etmiştir. Bu yatırımlar, HRSG'ler için kanal brülörü kullanamama sorununu çözmüştür, aynı HRSG'deki besleme suyu bölümünde ani buharlaşma sorununu (flashing) çözmüş ve düşükyanmalı kazanların yedeklemesini azaltarak $100000 \mathrm{lb} / \mathrm{h}$ lik bir buhar tasarrufunu getirmiş ve bir bypass sistemi kullanımına olanak vererek güvenirliği tehlikeye atmaksızın buhar türbini yedeklerini kullanma ihtiyacını ortadan kaldırmıştır. Bütün tesis için bir

dengeli model yaratılmasına gerek gösteren gerçek zamanlı bir optimalleştirme sistemi gerekmektedir, tesis sistemlerinin ayrıntılı analizini yapacak bir kurulum da gerçekleştirilmiştir.

Daha düşük verimli kazanlar yerine \% 90 verimli kazan kullanmayı olanaklı kılan bir etkin brülör yönetim sisteminin de kurulumu yapılmıştır. Besleme suyu bölümünde ani buharlaşma sorunu, bir harmanlama devresi ile çözümlenmiştir (aşağıdaki şekle bakınız).

Yanma turbini/HRSG kulllanımı sistemi devre devre dışı bırakacak düşük-yanmalı kazanları gerektirir. Mevcut yanmalı kazanlar (150 000~500 $000 \mathrm{lb} / \mathrm{h}$) bu buhar üretiminin sadece $100000 \mathrm{lb} / \mathrm{h}^{\prime}$ lik bölümünü daha verimli HRSG'lere kaydırmaya elverişlidir. Bu iki kazan, değişken frekanslı tahrikle (VFD) baca gazları fanını, doğal gaz akışını değiştiren ve federal yayınım gereklerini karşılayabilmek için fazla O_{2} ve NO_{x} yayınımını gözlemleyen bir baca gazı resirkülasyon şeması ile tadil edilmişlerdir.

Bu sistem, NO_{x} üretimini. $21 \mathrm{lbs} / \mathrm{MMB}$ tu'den to. $03 \mathrm{lbs} / \mathrm{MMBTU}$ 'ya (1 milyon Btu) ve bütün yanma süreci boyunca kazan verimini yaklaşık, \% 3 geliştirmiş ve kazanların yaklaşık 1 MMBTU'de .kümelenmesine olanak vermiştir. Bu sistemin nihai sonucu, 11000 Btu/kW'lık buhar türbini üretim çevriminin $8000 \mathrm{Btu} / \mathrm{kW}$ 'lık bir birleşik çevrimle değiştirilmesi ile yanma havası fanının VFD'ler için gerekli güçte (hp) önemli bir tasarruf elde edilmesi kazan vanalarının kaldırılmasıdır. Bu kurulum daha önce beklenmeyen biçimde 18 aylık bir geri-ödeme süresine sahiptir. Aşağıdaki grafik kurulumdan önce ve sonraki durumu açıklamaktadır.

Üniversite sistemi için bir diğer problem de bir buhar turbine devre dışına çıktığında fazla buharın nasıl kullanılacağıydı. Eğer büyük bir buhar turbini devre dışı kalıyorsa, tesisin işlemlemesi gereken fazla buhar 300000 lb / h gtibi yüksek bir miktardadır. Bu sorunun çözümü, bu buharın her biri 1 MW yedekleme yapmakta kullanılan iki adet düşük
verimli buhar türbininde $(1948,1958)$ alt istasyon olarak kullanılmasıyla çözümlendi. Büyük kapasiteli buhar türbinlerinden birisi devre dışı kaldığında buhar bu iki buhar türbinine yönlendirilecek ve böylece alt istasyondan kampus dağıtım sistemine, gerektiğinde $165 \mathrm{psi}(1 \mathrm{~atm}=14.5 \mathrm{psi}) 500 \mathrm{~F}$ sıcaklıkta buhar sağlanacak kalan buhar ise boşaltım vanaları arasından atılacaktır. Tesis kampusun ortasında yerleşik olduğundan, bu ek gürültü çok önemli bir sorun olarak beliriyordu. Bu sorun aşağıda açıklanan pasif buhar susturucu system ile çözümlendi.

Bu system tesisin toplam buhar yükünü azaltarak, $30000 \mathrm{lb} / \mathrm{h}$ tasarruf sağlamak üzere iki buhar türbininin durdurulması olanağını vermektedir. Bu sisteme yapılan yatırımın geri ödeme süresi yaklaşık bir yıldır.

Bir gerçek-zamanlı optimalleştirme sisteminin yerleştirilmesi, tesisteki ölçme işlemleri ile enstrumantasyonun yenilenmesi, dar boğazların giderilmesini ve tam bir mühen-

dislik çalışması gereğini doğurmuştur. Sistemin nihai sonuçları, bir işlemi gerçekleştirmeden yada tesiste kurulum riskini almaksızın "olsa-ne olur" türünden senaryolara yapılmasına olanak sağlaması, tesisteki parazit yüklerin 2350 HP'den 1.8 MW'a indirilmesi olmuştur. Aşağıdaki diyagram tüm kampus sistemi için bir anlık fotoğraf niteliğindedir.

1998'den itibaren kampusa, $3000000 \mathrm{ft}^{2}$ yeni tesis alanı eklenmiştir (\% 17.8) Tesisin enerji kullanımı yaklaşık \% 18.5 artmıştır. Eğer tesis verimi sabit kalsaydı yakıt tüketimi \% 18.7 artacaktı. Yukarıdaki yatırımlar doğal gaz tüketi mini aşağıdaki grafikte açıklandığı gibi \% 4.4'de tutmuştur. Yukardaki grafik yıllık ortalama isıl iyileştirmeleri ve 1999'dan itibaren toplam verimdeki iyileşmeleri göstermektedir.

Elektrik enerjisini \% 100 mahalde üretmek yerine dışarıdan satın alma seçeneği üzerinde yapılan son bir araştırmada; \% 100 üretmeye karşı \% 90 satın almanın, kampüsün buhara ve soğutulmuş suya bağımlılığı nedeniyle, kampusa yıllık 10 milyon daha fazla yük
getireceği anlaşılmıştır. Bu ek yük, daha küçük miktarlarda satın almayı, ya gidildiğinde de ortaya çıkmaktadır.

Satın alınan elektrik enerjisiyle gaz türbininde buhar üretmenin maliyeti orantılı biçimde düşecek olsa bile, direk ateşlemeli kazanın kullanımı artacaktır. Kampusun, sıcak su/ssitma amaçlı buhar üretimini, elektrik ve soğuk su üretimini desteklemem için bu kazan kullanımı nispeten sabittir. Gaz türbini üretimini azaltmak artık yük eğrisinde daha düşük bir noktada çalışılacağından bir enerji zararı yaratacak ve türbin egzozundan bu durumda daha az bedava buhar miktarı alınabilecektir. Yakmalı kazanlar için daha fazla miktarda doğal ile elektrik satın alınması tasarruf yerine toplam maliyet artışı getirecektir.

Sadece güvenirlik ve güncel piyasa ekonomisi düzeyinde elektrik sağlayabileceğimizden, son 70 yılda olduğu gibi kampus kendineyeterlilik bakımından mücadele vermeye devam edecektir. Yine de, kampus, gelecekteki genişlemeler için deregüle edilen elektrik piyasasından elektrik satın almaya devam edeceğinden, gelecekteki ihtiyaçları düşünerek kapasiteyi genişletmek ve güvenirlik ihtiyaçlarına bu biçimde yanıt verme seçeneği ile karşılaştırılmalıdır.

Yazar;

Juan Ontiveros,

Makina Mühendisliği dalında lisans ve yüksek lisans derecelerine sahiptir. Ayrıca Teksas eyaletinde profesyonel mühendis olarak kayttl olup otuz bir yılı aşan bir süre içersinde tasarım, imalat, bakım mühendisliği, proje yönetimi ve tesis işletimi gibi görevlerde bulunmuştur. Son yirmi üç yllda özellikle işletme ve bakım, mütahitlik, müşavirlik gibi alanlarda hizmet vermiş ve enerji piyasalarında elektrik tarifelerinin tesbiti görüşmelerinde etkin rol oynamıştır. Dokuz yıldır Austin Texas Üniversitesi'nde santral müdürlüğü ve enerji yöneticisi görevlerini sürdürmektedir.

[^0]: * İzin alınarak çevrilmiştir. Tüm hakkı saklıdır. C 2004 Amerikan Isıtma, Soğutma ve Havalandırma Derneği. Orijinal basımı, Ashrea 2004 yayınları, X. Baskı, bölüm 2. Çevirisi ve dağıtımı TTMD tarafindan yapılmıştır. Çeviri hatalarından ASHREA sorumlu tutulamaz. İngilizce sürümü için, ASHREA, 1791 Tullie Circle, NE, Atlanta. GA 503292305 USA, www.asrea.org adresinden iletişim sağlayınız.
 ** "Translated by permission. All rights reserved. © 2004 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Original publication in ASHRAE Transactions 2004, Vol. 110, Part 2. Translated and distributed by TTMD. ASHRAE assumes no responsibility for the accuracy of the translation. To purchase the English language edition, contact ASHRAE, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305 USA, www.ashrae.org"

